cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334016 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 4, 10, 21, 35, 8, 25, 65, 139, 237, 16, 60, 179, 451, 978, 1684, 32, 140, 470, 1337, 3339, 7239, 12557, 64, 320, 1189, 3725, 10325, 25559, 55423, 96605, 128, 720, 2926, 9958, 30018, 81716, 200922, 435550, 761938, 256, 1600, 7048, 25802, 83518
Offset: 1

Views

Author

Peter Kagey, Apr 12 2020

Keywords

Examples

			Table begins:
n\k|   1    2     3      4       5        6         7          8
---+------------------------------------------------------------
  1|   1    1     6     35     237     1684     12557      96605
  2|   1    4    21    139     978     7239     55423     435550
  3|   2   10    65    451    3339    25559    200922    1611624
  4|   4   25   179   1337   10325    81716    658918    5394051
  5|   8   60   470   3725   30018   245220   2027447   16935981
  6|  16  140  1189   9958   83518   703635   5961973   50811786
  7|  32  320  2926  25802  224831  1951587  16938814  147261146
  8|  64  720  7048  65241  589701  5269220  46826316  415175289
For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are:
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2),
(1,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
		

Crossrefs

Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-right, up-left), A334017 (up, right, up-left).
A071945 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves.

Formula

T(n,k) = Sum_{i=1..k-1} T(n+i, k-i) + Sum_{i=1..min(n,k)-1} T(n-i, k-i) + Sum_{i=1..n-1} T(n-i, k).