A334016 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves.
1, 1, 1, 2, 4, 6, 4, 10, 21, 35, 8, 25, 65, 139, 237, 16, 60, 179, 451, 978, 1684, 32, 140, 470, 1337, 3339, 7239, 12557, 64, 320, 1189, 3725, 10325, 25559, 55423, 96605, 128, 720, 2926, 9958, 30018, 81716, 200922, 435550, 761938, 256, 1600, 7048, 25802, 83518
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 7 8 ---+------------------------------------------------------------ 1| 1 1 6 35 237 1684 12557 96605 2| 1 4 21 139 978 7239 55423 435550 3| 2 10 65 451 3339 25559 200922 1611624 4| 4 25 179 1337 10325 81716 658918 5394051 5| 8 60 470 3725 30018 245220 2027447 16935981 6| 16 140 1189 9958 83518 703635 5961973 50811786 7| 32 320 2926 25802 224831 1951587 16938814 147261146 8| 64 720 7048 65241 589701 5269220 46826316 415175289 For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are: (1,1) -> (2,1) -> (1,2) -> (2,2), (1,1) -> (2,1) -> (3,1) -> (2,2), (1,1) -> (2,2), and (1,1) -> (3,1) -> (2,2).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals)
- Peter Kagey, Parity bitmap of first 2048 rows and 1024 columns. (Even and odd entries and represented by black and white pixels respectively.)
Crossrefs
Formula
T(n,k) = Sum_{i=1..k-1} T(n+i, k-i) + Sum_{i=1..min(n,k)-1} T(n-i, k-i) + Sum_{i=1..n-1} T(n-i, k).