This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334017 #19 Feb 21 2021 02:08:49 %S A334017 1,1,2,2,5,10,4,13,33,63,8,32,98,240,454,16,76,269,777,1871,3539,32, %T A334017 176,702,2295,6420,15314,29008,64,400,1768,6393,19970,54758,129825, %U A334017 246255,128,896,4336,17088,58342,176971,478662,1129967,2145722,256,1984,10416 %N A334017 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only up, right, and diagonal up-left moves. %C A334017 First row is A175962. %H A334017 Peter Kagey, <a href="/A334017/b334017.txt">Table of n, a(n) for n = 1..10011</a> (first 141 antidiagonals) %H A334017 Peter Kagey, <a href="/A334017/a334017.png">Parity bitmap for first 1024 rows and columns</a>. (Even and odd entries and represented by black and white pixels respectively.) %e A334017 Table begins: %e A334017 n\k| 1 2 3 4 5 6 7 8 %e A334017 ---+---------------------------------------------------------- %e A334017 1| 1 2 10 63 454 3539 29008 246255 %e A334017 2| 1 5 33 240 1871 15314 129825 1129967 %e A334017 3| 2 13 98 777 6420 54758 478662 4266102 %e A334017 4| 4 32 269 2295 19970 176971 1593093 14532881 %e A334017 5| 8 76 702 6393 58342 536080 4965056 46345046 %e A334017 6| 16 176 1768 17088 163041 1550809 14765863 140982374 %e A334017 7| 32 400 4336 44280 440602 4332221 42373370 413689403 %e A334017 8| 64 896 10416 111984 1159580 11771312 118190333 1179448443 %e A334017 For example, the T(2,2) = 5 sequences of permissible queen's moves from (1,1) to (2,2) are: %e A334017 (1,1) -> (1,2) -> (2,2), %e A334017 (1,1) -> (2,1) -> (1,2) -> (2,2), %e A334017 (1,1) -> (2,1) -> (2,2), %e A334017 (1,1) -> (2,1) -> (3,1) -> (2,2), and %e A334017 (1,1) -> (3,1) -> (2,2). %Y A334017 Cf. A175962. %Y A334017 Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-left), A334016 (right, up-right, up-left). %Y A334017 A033877 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves. %K A334017 nonn,tabl %O A334017 1,3 %A A334017 _Peter Kagey_, Apr 12 2020