cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372694 Numbers k such that A372692(k) = A372692(k+1) = A372692(k+2) > 1.

Original entry on oeis.org

17784450, 28873348, 38990474, 44534923, 48780675, 85648274, 95438475, 100982924, 111100050, 157757850, 184508323, 188754075, 225621674, 240956324, 251073450, 308820148, 318937274, 334271924, 365595074, 371139523, 378806848, 391046850, 437704650, 505568474, 511112923
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

Can 4 consecutive integers have the same value of A372692? There are none below 2*10^10.

Crossrefs

Subsequence of A070258 and A372693.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], ?(# == 0 &)])); s[1] = 1; s[n] := s[n] = Times @@ (Flatten@ (f @@@ FactorInteger[n]) + 1);
    Select[Range[10^8], (s1 = s[#]) > 1 && s1 == s[# + 1] == s[# + 2] &]
  • PARI
    s(n) = {my(f = factor(n), k); prod(i = 1, #f~, k = apply(x -> 1 - x, binary(f[i, 2])); prod(j = 1, #k, if(k[j], f[i, 1]^(2^(#k-j)) + 1, 1)));}
    lista(kmax) = {my(s1 = s(1), s2 = s(2), s3); for(k = 3, kmax, s3 = s(k); if(s1 > 1 && s1 == s2 && s2 == s3, print1(k - 2, ", ")); s1 = s2; s2 = s3);}

A334022 Numbers k such that s(k) = s(k+1) = s(k+2) = s(k+3), where s(k) is the sum of unitary divisors of k that are smaller than sqrt(k) (A334019).

Original entry on oeis.org

2, 46351754, 102841142, 158071592, 667930085, 851043553, 1097409992, 1580045430, 1595193655, 1698842487, 1919035496, 1951958341, 2279249234, 2507918727, 2520080695, 2741951910, 3335769314, 3654512455, 3713106152, 4209598844, 4351540982, 4369408604, 4480814965
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2020

Keywords

Examples

			2 is a term since A334019(2) = A334019(3) = A334019(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, #^2 < n && CoprimeQ[#, n/#] &]; seq={}; s1 = s[1]; s2 = s[2]; s3 = s[3]; Do[s4 = s[n]; If[s1 == s2 && s2 == s3 && s3 == s4, AppendTo[seq, n - 3]]; s1 = s2; s2 = s3; s3 = s4, {n, 4, 10^9}]; seq
Showing 1-2 of 2 results.