A334030 Number of combinatory separations of a multiset whose multiplicities are the parts of the n-th composition in standard order.
1, 1, 2, 2, 3, 4, 4, 3, 5, 7, 8, 8, 7, 9, 8, 5, 7, 12, 15, 14, 15, 17, 18, 13, 12, 17, 17, 16, 14, 16, 13, 7, 11, 19, 27, 26, 27, 37, 37, 25, 27, 37, 33, 34, 37, 40, 36, 22, 19, 32, 37, 33, 37, 38, 40, 28, 26, 33, 34, 30, 25, 28, 22, 11, 15, 30, 44, 42, 51, 68
Offset: 0
Keywords
Examples
The combinatory separations for n = 1, 3, 5, 9, 10, 13 (heads not shown): (1) (12) (112) (1112) (1122) (1223) (1)(1) (1)(11) (1)(111) (11)(11) (1)(112) (1)(12) (1)(112) (1)(112) (11)(12) (1)(1)(1) (11)(12) (1)(122) (1)(122) (1)(1)(11) (12)(12) (1)(123) (1)(1)(12) (1)(1)(11) (12)(12) (1)(1)(1)(1) (1)(1)(12) (1)(1)(11) (1)(1)(1)(1) (1)(1)(12) (1)(1)(1)(1)
Crossrefs
Multisets of compositions are A034691.
The described multiset is a row of A095684.
Combinatory separations of normal multisets are A269134.
Shuffles of compositions are counted by A292884.
Combinatory separations of prime indices are A318559.
The version for prime indices is A318560.
Combinatory separations of strongly normal multisets are A318563.
Multiset partitions of the described multiset are A333942.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Length of Lyndon factorization is A329312.
- Dealings are counted by A333939.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; ptnToNorm[y_]:=Join@@Table[ConstantArray[i,y[[i]]],{i,Length[y]}]; Table[Length[Union[Table[Sort[normize/@m],{m,mps[ptnToNorm[stc[n]]]}]]],{n,0,100}]
Comments