This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334045 #34 Jan 14 2021 02:23:20 %S A334045 0,0,0,0,2,0,0,0,6,4,4,0,2,0,0,0,14,12,12,8,10,8,8,0,6,4,4,0,2,0,0,0, %T A334045 30,28,28,24,26,24,24,16,22,20,20,16,18,16,16,0,14,12,12,8,10,8,8,0,6, %U A334045 4,4,0,2,0,0,0,62,60,60,56,58,56,56,48,54,52,52 %N A334045 Bitwise NOR of binary representation of n and n-1. %C A334045 All terms are even. %C A334045 a(1) = 0, a(2) = 0, and a(2^n + 1) = 2^n - 2 for n > 0. Are there any other cases where n - a(n) < 4? - _Charles R Greathouse IV_, Apr 13 2020 %C A334045 The answer to the above question is no. Write n as n = (2m+1)*k, i.e. k = A006519(n) is the highest power of 2 dividing n. If m = 0, a(n) = 0 and n - a(n) = n. If m > 0, then a(n) = 2v*k, where v is the 1's complement of m. Thus n-a(n) = (2(m-v)+1)*k. Since m in binary has a leading 1, m - v >= 1 and thus n - a(n) >= 3 with n - a(n) = 3 when n > 2, k = 1 and m - v = 1, i.e. m is a power of 2 and n is of the form 2^r + 1. - _Chai Wah Wu_, Apr 13 2020 %H A334045 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %e A334045 a(11) = 11 NOR 10 = bin 1011 NOR 1010 = bin 100 = 4. %p A334045 a:= n-> Bits[Nor](n, n-1): %p A334045 seq(a(n), n=1..100); # _Alois P. Heinz_, Apr 13 2020 %o A334045 (Python) %o A334045 def norbitwise(n): %o A334045 a = str(bin(n))[2:] %o A334045 b = str(bin(n-1))[2:] %o A334045 if len(b) < len(a): %o A334045 b = '0' + b %o A334045 c = '' %o A334045 for i in range(len(a)): %o A334045 if a[i] == b[i] and a[i] == '0': %o A334045 c += '1' %o A334045 else: %o A334045 c += '0' %o A334045 return int(c,2) %o A334045 (Python) %o A334045 def A334045(n): %o A334045 m = n|(n-1) %o A334045 return 2**(len(bin(m))-2)-1-m # _Chai Wah Wu_, Apr 13 2020 %o A334045 (PARI) a(n) = my(x=bitor(n-1, n)); bitneg(x, #binary(x)); \\ _Michel Marcus_, Apr 13 2020 %Y A334045 Cf. A038712 (n XOR n-1), A086799 (n OR n-1), A129760 (n AND n-1). %K A334045 easy,base,nonn %O A334045 1,5 %A A334045 _Christoph Schreier_, Apr 13 2020