This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334058 #24 Jan 07 2024 15:29:30 %S A334058 1,0,1,121,4,1,124760,1347,18,1,486854621,2001548,8154,52,1, %T A334058 5184423824705,10231953233,17045774,35542,121,1,123243726413573515, %U A334058 134835947255262,112619668659,102416812,124881,246,1,5717986519188343198259,3821094862609800013,1820735766620673,863827126967,486979381,375627,455,1 %N A334058 Triangle read by rows: T(n,k) is the number of configurations with exactly k polyomino matchings in a generalized game of memory played on the path of length 5n. %C A334058 In this generalized game of memory n indistinguishable quintuples of matched cards are placed on the vertices of the path of length 5n. A polyomino is a quintuple on five adjacent vertices. %C A334058 T(n,k) is the number of set partitions of {1..5n} into n sets of 5 with k of the sets being a contiguous set of elements. - _Andrew Howroyd_, Apr 16 2020 %H A334058 Andrew Howroyd, <a href="/A334058/b334058.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A334058 Donovan Young, <a href="https://arxiv.org/abs/2004.06921">Linear k-Chord Diagrams</a>, arXiv:2004.06921 [math.CO], 2020. %F A334058 G.f.: Sum_{j>=0} (5*j)! * y^j / (j! * 120^j * (1+(1-z)*y)^(5*j+1)). %F A334058 T(n,k) = Sum_{j=0..n-k} (-1)^(n-j-k)*(n+4*j)!/(120^j*j!*(n-j-k)!*k!). - _Andrew Howroyd_, Apr 16 2020 %e A334058 The first few rows of T(n,k) are: %e A334058 1; %e A334058 0, 1; %e A334058 121, 4, 1; %e A334058 124760, 1347, 18, 1; %e A334058 486854621, 2001548, 8154, 52, 1; %e A334058 ... %e A334058 For n=2 and k=1 the polyomino must start either on the second, third, fourth, or fifth vertex of the path, otherwise the remaining quintuple will also form a polyomino; thus T(2,1) = 4. %t A334058 CoefficientList[Normal[Series[Sum[y^j*(5*j)!/120^j/j!/(1+y*(1-z))^(5*j+1),{j,0,20}],{y,0,20}]],{y,z}] %o A334058 (PARI) T(n,k)={sum(j=0, n-k, (-1)^(n-j-k)*(n+4*j)!/(120^j*j!*(n-j-k)!*k!))} \\ _Andrew Howroyd_, Apr 16 2020 %Y A334058 Row sums are A025037. %Y A334058 Cf. A079267, A334056, A334057, A325753. %K A334058 nonn,tabl %O A334058 0,4 %A A334058 _Donovan Young_, Apr 15 2020