cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334060 Triangle read by rows: T(n,k) is the number of set partitions of {1..3n} into n sets of 3 with k disjoint strings of adjacent sets, each being a contiguous set of elements.

Original entry on oeis.org

1, 0, 1, 7, 3, 0, 219, 56, 5, 0, 12861, 2352, 183, 4, 0, 1215794, 174137, 11145, 323, 1, 0, 169509845, 19970411, 1078977, 30833, 334, 0, 0, 32774737463, 3280250014, 153076174, 4056764, 55379, 206, 0, 0, 8400108766161, 730845033406, 29989041076, 727278456, 10341101, 67730, 70, 0, 0
Offset: 0

Views

Author

Donovan Young, May 26 2020

Keywords

Comments

Number of configurations with k connected components (consisting of polyomino matchings) in the generalized game of memory played on the path of length 3n, see [Young].

Examples

			Triangle begins:
      1;
      0,    1;
      7,    3,   0;
    219,   56,   5, 0;
  12861, 2352, 183, 4, 0;
  ...
For n=2 and k=1 the configurations are (1,5,6),(2,3,4) and (1,2,6),(3,4,5) (i.e. configurations with a single contiguous set) and (1,2,3),(4,5,6) (i.e. two adjacent contiguous sets); hence T(2,1) = 3.
		

Crossrefs

Row sums are A025035.
Column k=0 is column 0 of A334056.

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[y^j*(3*j)!/6^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(3*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
  • PARI
    T(n)={my(v=Vec(sum(j=0, n, (3*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(3*j+1) / (j! * 6^j * (1-(1-y)*x^2 + O(x*x^n))^(3*j+1))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(8)); for(n=1, #A, print(A[n])) }

Formula

G.f.: Sum_{j>=0} (3*j)! * y^j * (1-(1-z)*y)^(3*j+1) / (j! * 6^j * (1-(1-z)*y^2)^(3*j+1)).