A334062 Triangle read by rows: T(n,k) is the number of non-crossing set partitions of {1..4n} into n sets of 4 with k of the sets being a contiguous set of elements.
1, 3, 1, 9, 12, 1, 27, 81, 31, 1, 81, 432, 390, 65, 1, 243, 2025, 3330, 1365, 120, 1, 729, 8748, 22815, 17415, 3909, 203, 1, 2187, 35721, 135513, 166320, 70938, 9730, 322, 1, 6561, 139968, 728028, 1312038, 911358, 242004, 21816, 486, 1, 19683, 531441, 3630420, 9032310, 9294264, 4067658, 722316, 45090, 705, 1
Offset: 1
Examples
Triangle starts: 1; 3, 1; 9, 12, 1; 27, 81, 31, 1; 81, 432, 390, 65, 1; 243, 2025, 3330, 1365, 120, 1; ... For n=2 and k=1 the configurations are (1,6,7,8),(2,3,4,5), (1,2,7,8),(3,4,5,6), and (1,2,3,8),(4,5,6,7); hence T(2,1) = 3.
Links
- Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
Formula
G.f.: G(t, z) satisfies z*G^4 - (1 + z - t*z)*G + 1 = 0.
Comments