cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334074 a(n) is the numerator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).

This page as a plain text file.
%I A334074 #22 Apr 25 2025 04:29:48
%S A334074 0,0,1,1,1,1,12,1,10,71,16,103,215,311,311,311,431,30,791,36,575,8586,
%T A334074 222349,222349,182169,144961,747338,8630,1343,89513,2904968,520321,
%U A334074 45746,1005129,350073,1890784,72480703,34997904,257894479,257894479,1755387611,1755387611
%N A334074 a(n) is the numerator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).
%C A334074 Erdős et al. (1975) could not decide if the fraction f(n) = a(n)/A334075(n) is bounded. They found its asymptotic mean (see formula).
%D A334074 R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.
%H A334074 Chai Wah Wu, <a href="/A334074/b334074.txt">Table of n, a(n) for n = 1..3844</a>
%H A334074 Paul Erdős, Ronald L. Graham, Imre Z. Ruzsa and Ernst G. Straus, <a href="https://doi.org/10.1090/S0025-5718-1975-0369288-3">On the prime factors of C(2*n, n)</a>, Mathematics of Computation, Vol. 29, No. 129 (1975), pp. 83-92.
%F A334074 a(n) = numerator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p).
%F A334074 Limit_{k -> infinity} (1/k) Sum_{i=1..k} a(i)/A334075(i) = Sum_{k>=2} log(k)/2^k (A114124).
%F A334074 Limit_{k -> infinity} (1/k) Sum_{i=1..k} (a(i)/A334075(i))^2 = (Sum_{k>=2} log(k)/2^k)^2.
%e A334074 For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = numerator(1/5 + 1/7) = numerator(12/35) = 12.
%t A334074 a[n_] := Numerator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
%o A334074 (PARI) a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); numerator(s);} \\ _Michel Marcus_, Apr 14 2020
%o A334074 (Python)
%o A334074 from fractions import Fraction
%o A334074 from sympy import binomial, isprime
%o A334074 def A334074(n):
%o A334074     b = binomial(2*n,n)
%o A334074     return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).numerator # _Chai Wah Wu_, Apr 14 2020
%Y A334074 Cf. A000984, A114124, A334075 (denominators).
%K A334074 nonn,frac
%O A334074 1,7
%A A334074 _Amiram Eldar_, Apr 13 2020