This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334075 #22 Apr 25 2025 04:29:51 %S A334075 1,1,3,3,5,5,35,7,21,105,55,165,429,1001,1001,1001,1547,221,4199,323, %T A334075 2261,24871,572033,572033,408595,312455,937365,17043,8671,130065, %U A334075 4032015,1344005,227447,3866599,840565,2521695,93302715,118183439,419014011,419014011,5726524817 %N A334075 a(n) is the denominator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n). %D A334075 R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33. %H A334075 Chai Wah Wu, <a href="/A334075/b334075.txt">Table of n, a(n) for n = 1..3844</a> %H A334075 Paul Erdős, Ronald L. Graham, Imre Z. Ruzsa and Ernst G. Straus, <a href="https://doi.org/10.1090/S0025-5718-1975-0369288-3">On the prime factors of C(2*n, n)</a>, Mathematics of Computation, Vol. 29, No. 129 (1975), pp. 83-92. %F A334075 a(n) = denominator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p). %e A334075 For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = denominator(1/5 + 1/7) = denominator(12/35) = 35. %t A334075 a[n_] := Denominator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50] %o A334075 (PARI) a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); denominator(s);} \\ _Michel Marcus_, Apr 14 2020 %o A334075 (Python) %o A334075 from fractions import Fraction %o A334075 from sympy import binomial, isprime %o A334075 def A334075(n): %o A334075 b = binomial(2*n,n) %o A334075 return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).denominator # _Chai Wah Wu_, Apr 14 2020 %Y A334075 Cf. A000984, A334074 (numerators). %K A334075 nonn,frac %O A334075 1,3 %A A334075 _Amiram Eldar_, Apr 13 2020