cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334075 a(n) is the denominator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).

This page as a plain text file.
%I A334075 #22 Apr 25 2025 04:29:51
%S A334075 1,1,3,3,5,5,35,7,21,105,55,165,429,1001,1001,1001,1547,221,4199,323,
%T A334075 2261,24871,572033,572033,408595,312455,937365,17043,8671,130065,
%U A334075 4032015,1344005,227447,3866599,840565,2521695,93302715,118183439,419014011,419014011,5726524817
%N A334075 a(n) is the denominator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).
%D A334075 R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.
%H A334075 Chai Wah Wu, <a href="/A334075/b334075.txt">Table of n, a(n) for n = 1..3844</a>
%H A334075 Paul Erdős, Ronald L. Graham, Imre Z. Ruzsa and Ernst G. Straus, <a href="https://doi.org/10.1090/S0025-5718-1975-0369288-3">On the prime factors of C(2*n, n)</a>, Mathematics of Computation, Vol. 29, No. 129 (1975), pp. 83-92.
%F A334075 a(n) = denominator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p).
%e A334075 For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = denominator(1/5 + 1/7) = denominator(12/35) = 35.
%t A334075 a[n_] := Denominator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
%o A334075 (PARI) a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); denominator(s);} \\ _Michel Marcus_, Apr 14 2020
%o A334075 (Python)
%o A334075 from fractions import Fraction
%o A334075 from sympy import binomial, isprime
%o A334075 def A334075(n):
%o A334075     b = binomial(2*n,n)
%o A334075     return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).denominator # _Chai Wah Wu_, Apr 14 2020
%Y A334075 Cf. A000984, A334074 (numerators).
%K A334075 nonn,frac
%O A334075 1,3
%A A334075 _Amiram Eldar_, Apr 13 2020