This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334076 #37 Apr 18 2020 17:09:53 %S A334076 0,0,1,0,3,0,1,0,7,4,1,0,3,0,1,0,15,12,9,8,3,0,1,0,7,4,1,0,3,0,1,0,31, %T A334076 28,25,24,19,16,17,16,7,4,1,0,3,0,1,0,15,12,9,8,3,0,1,0,7,4,1,0,3,0,1, %U A334076 0,63,60,57,56,51,48,49,48,39,36,33,32,35,32,33 %N A334076 a(n) = bitwise NOR of n and 2n. %C A334076 Exactly all bits that are 0 in both parameters (but not a leading 0 of both) are set to 1 in the output of bitwise NOR. %H A334076 Alois P. Heinz, <a href="/A334076/b334076.txt">Table of n, a(n) for n = 0..32767</a> %H A334076 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %F A334076 a(n) = 0 <=> n in { A247648 } union { 0 }. %F A334076 a(n) = n-1 <=> n in { A000079 }. %F A334076 a(n) = n/2 <=> n in { A125835 }. %F A334076 a(n) = n*3/4 <=> n in { A141032 }. %p A334076 a:= n-> Bits[Nor](n, 2*n): %p A334076 seq(a(n), n=0..127); %o A334076 (Python) %o A334076 def A334076(n): %o A334076 m = n|(2*n) %o A334076 return 0 if n == 0 else 2**(len(bin(m))-2)-1-m # _Chai Wah Wu_, Apr 14 2020 %o A334076 (PARI) a(n) = my(x=bitor(n, 2*n)); bitneg(x, #binary(x)); \\ _Michel Marcus_, Apr 14 2020 %Y A334076 Cf. A000079, A048724, A125835, A141032, A163617, A213370, A247648. %K A334076 nonn,look,base %O A334076 0,5 %A A334076 _Alois P. Heinz_, Apr 13 2020