This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334088 #20 Nov 08 2023 01:49:33 %S A334088 1,1,8,676,591872,5347119376,497996601804800,477995151754478453824, %T A334088 4727827717838439286122217472,481856411624794348153802518369517824, %U A334088 506033683217425527860454091268429289861152768 %N A334088 a(n) = sqrt(Resultant(T(2*n,x/2), T(2*n,i*x/2))), where T(n,x) is a Chebyshev polynomial of the first kind and i = sqrt(-1). %H A334088 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a> %H A334088 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a> %F A334088 a(n) ~ exp(4*G*n^2/Pi) / 2^(2*n - 1/4), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Apr 14 2020 %t A334088 Table[Sqrt[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* _Vaclav Kotesovec_, Apr 14 2020 *) %o A334088 (PARI) {a(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))} %o A334088 (Python) %o A334088 from math import isqrt %o A334088 from sympy.abc import x %o A334088 from sympy import resultant, chebyshevt, I %o A334088 def A334088(n): return isqrt(resultant(chebyshevt(n<<1,x/2),chebyshevt(n<<1,I*x/2))) if n else 1 # _Chai Wah Wu_, Nov 07 2023 %Y A334088 Cf. A004003, A334089. %K A334088 nonn %O A334088 0,3 %A A334088 _Seiichi Manyama_, Apr 14 2020