cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334089 a(n) = sqrt(A334088(n)/2^(n-1)).

This page as a plain text file.
%I A334089 #19 Jan 04 2021 06:21:54
%S A334089 1,2,13,272,18281,3944920,2732887529,6077512159232,43384923739812577,
%T A334089 994156445200670735008,73125714588602035608260981,
%U A334089 17265651822746410593596262486016,13085551252412040683513520733767180041,31834381760532514451976501491991780699626368
%N A334089 a(n) = sqrt(A334088(n)/2^(n-1)).
%H A334089 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>
%H A334089 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a>
%F A334089 a(n) ~ exp(2*G*n^2/Pi) / 2^(3*n/2 - 5/8), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Apr 14 2020
%t A334089 Table[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]^(1/4) / 2^((n-1)/2), {n, 1, 15}] (* _Vaclav Kotesovec_, Apr 14 2020 *)
%o A334089 (PARI) {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))/2^(n-1))}
%Y A334089 Cf. A065072, A334088, A340295.
%K A334089 nonn
%O A334089 1,2
%A A334089 _Seiichi Manyama_, Apr 14 2020