cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334110 The squares of squarefree numbers (A062503), ordered lexicographically according to their prime factors. a(n) = Product_{k in I} prime(k+1)^2, where I are the indices of nonzero binary digits in n = Sum_{k in I} 2^k.

This page as a plain text file.
%I A334110 #40 Jun 11 2020 23:43:11
%S A334110 1,4,9,36,25,100,225,900,49,196,441,1764,1225,4900,11025,44100,121,
%T A334110 484,1089,4356,3025,12100,27225,108900,5929,23716,53361,213444,148225,
%U A334110 592900,1334025,5336100,169,676,1521,6084,4225,16900,38025,152100,8281,33124,74529,298116,207025,828100,1863225,7452900,20449,81796,184041
%N A334110 The squares of squarefree numbers (A062503), ordered lexicographically according to their prime factors. a(n) = Product_{k in I} prime(k+1)^2, where I are the indices of nonzero binary digits in n = Sum_{k in I} 2^k.
%C A334110 For the lexicographic ordering, the prime factors must be written in nonincreasing order. If we write the factors in nondecreasing order, we get a lexicographically ordered set with an order type that is greater than a natural number index - the resulting sequence does not include all qualifying numbers. (Note also that the symbols used for the lexicographic order are the prime numbers, not their digits.)
%C A334110 a(n) is the n-th power of 4 in the monoid defined in A331590.
%C A334110 Conjecture: a(n) is the position of the first occurrence of n in A334109.
%F A334110 a(n) = A019565(n)^2.
%F A334110 For n >= 1, a(A000079(n-1)) = A001248(n).
%F A334110 For all n >= 0, A334109(a(n)) = n.
%F A334110 a(n+k) = A331590(a(n), a(k)).
%F A334110 a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
%F A334110 a(n) = A225546(3^n).
%F A334110 a(2n) = A003961(a(n)).
%F A334110 a(2n+1) = 4 * a(2n).
%F A334110 a(2^k-1) = A061742(k).
%F A334110 A267116(a(n)) = 2.
%F A334110 A048675(a(n)) = 2n.
%F A334110 A097248(a(n)) = A332382(n) = A019565(2n).
%e A334110 The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic ordering. The list starts with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
%e A334110     1 = .
%e A334110     4 = 2*2.
%e A334110     9 = 3*3.
%e A334110    36 = 3*3*2*2.
%e A334110    25 = 5*5.
%e A334110   100 = 5*5*2*2.
%e A334110   225 = 5*5*3*3.
%e A334110   900 = 5*5*3*3*2*2.
%e A334110    49 = 7*7.
%e A334110   196 = 7*7*2*2.
%e A334110   441 = 7*7*3*3.
%t A334110 Array[If[# == 0, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[3^#]]] &, 51, 0] (* _Michael De Vlieger_, May 26 2020 *)
%o A334110 (PARI) A334110(n) = { my(p=2,m=1); while(n, if(n%2, m *= p^2); n >>= 1; p = nextprime(1+p)); (m); };
%Y A334110 Cf. A000079, A019565 (square roots), A048675, A097248, A225546, A267116, A332382, A334109 (a left inverse).
%Y A334110 Column 2 of A329332. Permutation of A062503.
%Y A334110 After 1, the right children of the leftmost edge of A334860, or respectively, the left children of the rightmost edge of A334866.
%Y A334110 Subsequences: A001248, A061742, A166329.
%Y A334110 Subsequence of A052330.
%Y A334110 A003961, A003987, A059897, A331590 are used to express relationship between terms of this sequence.
%K A334110 nonn
%O A334110 0,2
%A A334110 _Antti Karttunen_ and _Peter Munn_, May 01 2020