A334116 a(n) is the least number k greater than n such that the square roots of both k and n have continuous fractions with the same period p and, if p > 1, the same periodic terms except for the last term.
1, 5, 8, 4, 10, 12, 32, 15, 9, 17, 40, 20, 74, 33, 24, 16, 26, 39, 1880, 30, 112, 660, 96, 35, 25, 37, 104, 299, 338, 42, 77600, 75, 60, 78, 48, 36, 50, 84, 68, 87, 130, 56, 288968, 468, 350, 3242817, 192, 63, 49, 65, 200, 2726, 1042, 1628, 180, 72, 308, 425, 5880, 95
Offset: 1
Keywords
Examples
1) p=1: f(1)=2, f(2)=a(2)=5, f(3)=a(5)=10, f(4)=a(10)=17,.. sqrt(2)=[1,[2]], sqrt(5)=[2,[4]], sqrt(10)=[3,[6]], sqrt(17)=[4,[8]],.. 2) p=2: f(1)=3, f(2)=a(3)=8, f(3)=a(8)=15, f(4)=a(15)=24,.. sqrt(3)=[1,[1,2]], sqrt(8)=[2,[1,4]], sqrt(15)=[3,[1,6]], sqrt(24)=[4,[1,8]],.. 3) p=3: f(1)=41, f(2)=a(41)=130, f(3)=a(130)=269,.. sqrt(41)=[6,[2,2,12]], sqrt(130)=[11,[2,2,121]], sqrt(269)=[16,[2,2,256]],.. 4) p=4: f(1)=33, f(2)=a(33)=60, f(3)=a(60)=95,.. sqrt(33)=[5,[1,2,1,10]], sqrt(60)=[7,[1,2,1,49]], sqrt(95)=[9,[1,2,1,81]],.. Several subsequences f(k) with f(k+1)=a(f(k)). k>1 if first term in brackets, k>0 otherwise. First terms Period Formula Example 1) 2,5,10,17 1 A002522(k)=k^2+1 1 2) 3,8,15,24 2 A005563(k)=(k+1)^2-1 2 3)(2),6,12 2 A002378(k)=k*(k+1) 4) 7,32,75 4 A013656(k)=k*(9*k-2) 5) 11,40,87 2 A147296(k)=k*(9*k+2) 6) 13,74,185 5 A154357(k)=25*k^2-14*k+2 7) (3),14,33 4 A033991(k)=k*(4*k-1) 4 8) (5),18,39 2 A007742(k)=k*(4*k+1) 9) 21,112,275 6 A157265(k)=36*k^2-17*k+2 10)23,96,219 4 A154376(k)=25*k^2-2*k 11)27,104,231 2 A154377(k)=25*k^2+2*k 12)28,299,858 4 A156711(k)=144*k^2-161*k+45 13)29,338,985 5 A156640(k)=169*k^2+140*k+29 14)(8),34,78 4 A154516(k)=9*k^2-k 15)(10),38,84 2 A154517(k)=9*k^2+k 16)(2),41,130 3 A154355(k)=25*k^2-36*k+13 3 17)47,192,435 4 A157362(k)=49*k^2-2*k
References
- Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 3rd ed. 1993, page 428.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..138
- Gerhard Kirchner, Continued fractions with the same pattern
Crossrefs
Programs
-
Maxima
block([nmax: 100], /*saves the first nmax terms in the current directory*/ algebraic: true, local(coeff), showtime: true, fl: openw(sconcat("terms",nmax, ".txt")), coeff(w,m):= block(a: m, p: 0, s: w, vv:[], while a<2*m do (p: p+1, s: ratsimp(1/(s-floor(s))), a: floor(s), if a<2*m then vv: append(vv, [a])), j: floor((p-1)/2), if mod(p,2)=0 then v: [1,0,vv[j+1]] else v: [0,1,1], for i from j thru 1 step(-1) do (h: vv[i], u: [v[1]+h*v[3], v[3], 2*h*v[1]+v[2]+h^2*v[3]], v: u), return(v)), for n from 1 thru nmax do (w: sqrt(n), m: floor(w), if w=m then b: n else (v: coeff(w,m), x: v[1], y: v[2], z: v[3], q: mod(z,2), if q=0 then (z: z/2, y: y/2) else x: 2*x, fr: (x*m+y)/z, m: m+z, fr: fr+x, b: m^2+fr), printf( fl, "~d, ", b)), close(fl));
-
Python
from sympy import floor, S, sqrt def coeff(w,m): a, p, s, vv = m, 0, w, [] while a < 2*m: p += 1 s = S.One/(s-floor(s)) a = floor(s) if a < 2*m: vv.append(a) j = (p-1)//2 v = [0,1,1] if p % 2 else [1, 0, vv[j]] for i in range(j-1,-1,-1): h = vv[i] v = [v[0]+h*v[2], v[2], 2*h*v[0]+v[1]+h**2*v[2]] return v def A334116(n): w = sqrt(n) m = floor(w) if w == m: return n else: x, y, z = coeff(w,m) if z % 2: x *= 2 else: z //= 2 y //= 2 return (m+z)**2+x+(x*m+y)//z # Chai Wah Wu, Sep 30 2021, after Maxima code
Comments