This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334124 #38 Nov 08 2023 01:48:48 %S A334124 1,3,71,17753,46069729,1234496016491,341133743251787719, %T A334124 971684488369988888850993,28523907708086181923163934073729, %U A334124 8628515016553040037389969912341438652243,26895841132028233579514694272575933932911355677831 %N A334124 a(n) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*n}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). %H A334124 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a> %H A334124 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a> %F A334124 a(n) = A103997(n,n). %F A334124 a(n) ~ 2^(1/4) * exp(2*G*n*(2*n+1)/Pi) / (1 + sqrt(2))^n, where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Apr 16 2020, updated Jan 03 2021 %t A334124 Table[2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[2*n, I*x/2], x]], {n, 0, 12}] (* _Vaclav Kotesovec_, Apr 16 2020 *) %o A334124 (PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 1, I*x/2)))} %o A334124 (Python) %o A334124 from math import isqrt %o A334124 from sympy import resultant, chebyshevt, chebyshevu, I %o A334124 from sympy.abc import x %o A334124 def A334124(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevt(n<<1,I*x/2))*(1<<(n<<1))) if n else 1 # _Chai Wah Wu_, Nov 07 2023 %Y A334124 Main diagonal of A103997. %Y A334124 Cf. A004003, A334088. %K A334124 nonn %O A334124 0,2 %A A334124 _Seiichi Manyama_, Apr 15 2020