This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334143 #31 Oct 13 2023 11:29:12 %S A334143 0,0,0,0,0,2,12,8,0,0,0,18,20,16,0,0,0,0,56,48,48,32,36,6,26,24,16,16, %T A334143 2,0,0,116,116,96,104,96,64,88,80,64,72,64,0,58,56,40,32,0,24,18,16,0, %U A334143 4,4,248,240,240,224,226,228,192,200,200,192,194,128,164 %N A334143 a(n) = bitwise NOR of prime(n) and prime(n+1). %H A334143 Rémy Sigrist, <a href="/A334143/b334143.txt">Table of n, a(n) for n = 1..10000</a> %H A334143 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %F A334143 a(n) = A035327(A175329(n)). %e A334143 a(6) = prime(6) NOR prime(7) = 13 NOR 17 = 2. %p A334143 a:= n-> Bits[Nor](ithprime(n), ithprime(n+1)): %p A334143 seq(a(n), n=1..70); # _Alois P. Heinz_, Apr 15 2020 %t A334143 A334143[n_]:=With[{b=BitOr[Prime[n],Prime[n+1]]},2^BitLength[b]-b-1];Array[A334143,100] (* _Paolo Xausa_, Oct 13 2023 *) %o A334143 (Python) %o A334143 def NORprime(n): %o A334143 s = str(bin(primes[n]))[2:] %o A334143 t = str(bin(primes[n-1]))[2:] %o A334143 k = (len(s) - len(t)) %o A334143 t = k*'0' + t %o A334143 r = '' %o A334143 for i in range(len(s)): %o A334143 if s[i] == t[i] and s[i] == '0': %o A334143 r += '1' %o A334143 else: %o A334143 r += '0' %o A334143 return int(r,2) %o A334143 (PARI) a(n) = my(x=bitor(prime(n), prime(n+1))); bitneg(x, #binary(x)); \\ _Michel Marcus_, Apr 16 2020 %Y A334143 Cf. A000040, A112591, A145382, A175330. %K A334143 nonn,base %O A334143 1,6 %A A334143 _Christoph Schreier_, Apr 15 2020