A334138 Number of ways to write n as x^4 + y*(2*y+1) + z*(3*z+1), where x is a nonnegative integer, and y and z are integers.
1, 2, 2, 3, 3, 3, 3, 2, 2, 1, 3, 4, 2, 2, 3, 4, 4, 4, 3, 3, 4, 5, 2, 2, 4, 5, 6, 2, 3, 3, 6, 7, 4, 4, 2, 3, 5, 3, 2, 4, 5, 5, 1, 2, 2, 6, 8, 5, 3, 2, 4, 4, 5, 3, 4, 5, 5, 1, 4, 5, 5, 5, 2, 3, 0, 3, 6, 4, 4, 4, 5, 6, 2, 4, 4, 4, 4, 2, 2, 2, 7, 10, 5, 4, 4, 5, 7, 3, 4, 6, 3
Offset: 0
Keywords
Examples
a(9) = 1 with 9 = 1^4 + (-2)*(2*(-2)+1) + (-1)*(3*(-1)+1). a(554) = 1 with 554 = 2^4 + 16*(2*16+1) + (-2)*(3*(-2)+1). a(555) = 1 with 555 = 2^4 + (-5)*(2*(-5)+1) + (-13)*(3*(-13)+1). a(25713) = 1 with 25713 = 8^4 + (-85)*(2*(-85)+1) + 49*(3*49+1). a(80488) = 1 with 80488 = 0^4 + (-196)*(2*(-196)+1) + (-36)*(3*(-36)+1).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math. 63 (2020), 501-520.
Programs
-
Mathematica
QQ[n_]:=QQ[n]=IntegerQ[Sqrt[12n+1]]; tab={};Do[r=0;Do[If[QQ[n-x^4-y(2y+1)],r=r+1],{x,0,n^(1/4)},{y,-Floor[(Sqrt[8(n-x^4)+1]+1)/4],(Sqrt[8(n-x^4)+1]-1)/4}];tab=Append[tab,r],{n,0,90}];Print[tab]
Comments