This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334162 #6 Apr 17 2020 07:19:53 %S A334162 1,2,6,35,352,5307,111592,3117900,111259904,4912490375,261954304224, %T A334162 16560019685937,1222893826048000,104189533522270666, %U A334162 10132262911996769408,1114216450970154278543,137427598621356912082944,18877351974681584403701519,2869969478954093766868948480 %N A334162 a(0) = 1; thereafter a(n) = exp(-1/n) * Sum_{k>=0} (n*k + 1)^n / (n^k * k!). %H A334162 Moussa Benoumhani, <a href="https://doi.org/10.1016/0012-365X(95)00095-E">On Whitney numbers of Dowling lattices</a>, Discrete Math. 159 (1996), no. 1-3, 13-33. %F A334162 a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^k / Product_{j=1..k} (1 - n*j*x/(1 - x)). %F A334162 a(n) = n! * [x^n] exp(x + (exp(n*x) - 1) / n), for n > 0. %F A334162 a(n) = A334165(n,n). %t A334162 Table[SeriesCoefficient[1/(1 - x) Sum[(x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}] %t A334162 Join[{1}, Table[n! SeriesCoefficient[Exp[x + (Exp[n x] - 1)/n], {x, 0, n}], {n, 1, 18}]] %Y A334162 Cf. A000110, A007405, A003575, A003576, A003577, A003578, A003579, A003580, A003581, A003582, A301419, A334165. %K A334162 nonn %O A334162 0,2 %A A334162 _Ilya Gutkovskiy_, Apr 16 2020