A334184 Irregular table read by rows: T(n,k) gives the number of values that can be reached after exactly k iterations of maps of the form (n - n/p) where p is a prime divisor of n. 0 <= k < A073933(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2
Offset: 1
Examples
For n = 15, the fifteenth row of this table is [1,2,3,2,1,1] because there is one value (15 itself) that can be reached with zero iterations of (n - n/p) maps, two values (10 and 12) that can be reached after one iteration, three values (5, 8, and 6) that can be reached after two iterations, and so on. 15 _/ \_ / \ 10 12 | \_ _/ | | \ / | 5 8 6 \_ | _/| \_|_/ | 4 3 | _/ |_/ 2 | | 1 Table begins: 1 1, 1 1, 1, 1 1, 1, 1 1, 1, 1, 1 1, 2, 1, 1 1, 1, 2, 1, 1 1, 1, 1, 1 1, 1, 2, 1, 1 1, 2, 1, 1, 1 1, 1, 2, 1, 1, 1 1, 2, 2, 1, 1 1, 1, 2, 2, 1, 1 1, 2, 2, 2, 1, 1 1, 2, 3, 2, 1, 1 1, 1, 1, 1, 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12386 (rows 1 <= n <= 1000, flattened)
- Michael De Vlieger, Hasse diagrams showing rows n = {55, 63, 171, ...} that increase and decrease more than once.
- Michael De Vlieger, Table of n, b(n) for n = 1..10000, encoding the running total of row n of this sequence as a binary number expressed decimally.
Programs
-
Mathematica
Table[Length@ Union@ # & /@ Transpose@ # &@ If[n == 1, {{1}}, NestWhile[If[Length[#] == 0, Map[{n, #} &, # - # /FactorInteger[#][[All, 1]] ], Union[Join @@ Map[Function[{w, n}, Map[Append[w, If[n == 0, 0, n - n/#]] &, FactorInteger[n][[All, 1]] ]] @@ {#, Last@ #} &, #]]] &, n, If[ListQ[#], AllTrue[#, Last[#] > 1 &], # > 1] &]], {n, 22}] // Flatten (* Michael De Vlieger, Apr 18 2020 *)
Comments