This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334201 #23 Jan 01 2021 11:41:12 %S A334201 0,0,0,1,0,1,0,2,2,1,0,2,0,1,2,3,0,3,0,2,2,1,0,3,3,1,4,2,0,3,0,4,2,1, %T A334201 3,4,0,1,2,3,0,3,0,2,4,1,0,4,4,4,2,2,0,5,3,3,2,1,0,4,0,1,4,5,3,3,0,2, %U A334201 2,4,0,5,0,1,5,2,4,3,0,4,6,1,0,4,3,1,2,3,0,5,4,2,2,1,3,5,0,5,4,5,0,3,0,3,5 %N A334201 a(n) = A056239(n) - A061395(n). %C A334201 a(n) is the sum of all other parts of the partition having Heinz number n except one instance of the largest part. %H A334201 Antti Karttunen, <a href="/A334201/b334201.txt">Table of n, a(n) for n = 1..65537</a> %H A334201 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A334201 a(n) = A056239(n) - A061395(n) = A056239(A052126(n)). %F A334201 a(n) = A318995(A122111(n)). %F A334201 a(n) = a(A064989(n)) + A001222(n) - 1. %F A334201 a(n) = A339895(n) + A339896(n). - _Antti Karttunen_, Dec 31 2020 %t A334201 Array[Total[# /. {p_, c_} /; p > 0 :> PrimePi[p] c] - PrimePi@ #[[-1, 1]] &@ FactorInteger[#] &, 105] (* _Michael De Vlieger_, May 14 2020 *) %o A334201 (PARI) %o A334201 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A334201 A334201(n) = if(1==n,0,(bigomega(n)-1)+A334201(A064989(n))); %Y A334201 Cf. A001222, A052126, A056239, A061395, A122111, A318995. %Y A334201 Sum of A339895 and A339896. %Y A334201 Differs from A323077 for the first time at n=169, where a(169) = 6, while A323077(169) = 5. %Y A334201 Cf. also A334107. %K A334201 nonn %O A334201 1,8 %A A334201 _Antti Karttunen_, May 11 2020