This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334230 #32 Aug 12 2022 19:22:01 %S A334230 1,1,2,1,2,3,1,2,2,4,1,2,2,4,5,1,2,3,4,4,6,1,2,3,4,4,6,7,1,2,2,4,4,4, %T A334230 4,8,1,2,3,4,4,6,6,4,9,1,2,2,4,5,4,4,8,4,10,1,2,2,4,5,4,4,8,4,10,11,1, %U A334230 2,3,4,4,6,6,8,6,8,8,12,1,2,3,4,4,6,6,8 %N A334230 Triangle read by rows: T(n,k) gives the meet of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n. %C A334230 Any row with prime index p is a copy of row p-1 followed by that prime p. %H A334230 Antti Karttunen, <a href="/A334230/b334230.txt">Table of n, a(n) for n = 1..10440; The first 144 rows, flattened</a> %H A334230 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/3640072/121988">Does a graded poset on the positive integers generated from subtracting factors define a lattice?</a> %H A334230 Wikipedia, <a href="https://en.wikipedia.org/wiki/Semilattice">Semilattice</a> %F A334230 T(n, k) = m*T(n/m, k/m) for m = gcd(n, k). %e A334230 The interval [1,15] illustrates that, for example, T(12, 10) = 8, T(12, 4) = T(5, 6) = 4, T(8, 3) = 2, etc. %e A334230 15 %e A334230 _/ \_ %e A334230 / \ %e A334230 10 12 %e A334230 | \_ _/ | %e A334230 | \ / | %e A334230 5 8 6 %e A334230 \_ | _/| %e A334230 \_|_/ | %e A334230 4 3 %e A334230 | _/ %e A334230 |_/ %e A334230 2 %e A334230 | %e A334230 | %e A334230 1 %e A334230 Triangle begins: %e A334230 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A334230 ---+--------------------------------- %e A334230 1 | 1 %e A334230 2 | 1 2 %e A334230 3 | 1 2 3 %e A334230 4 | 1 2 2 4 %e A334230 5 | 1 2 2 4 5 %e A334230 6 | 1 2 3 4 4 6 %e A334230 7 | 1 2 3 4 4 6 7 %e A334230 8 | 1 2 2 4 4 4 4 8 %e A334230 9 | 1 2 3 4 4 6 6 4 9 %e A334230 10 | 1 2 2 4 5 4 4 8 4 10 %e A334230 11 | 1 2 2 4 5 4 4 8 4 10 11 %e A334230 12 | 1 2 3 4 4 6 6 8 6 8 8 12 %e A334230 13 | 1 2 3 4 4 6 6 8 6 8 8 12 13 %e A334230 14 | 1 2 3 4 4 6 7 8 6 8 8 12 12 14 %o A334230 (PARI) %o A334230 \\ This just returns the largest (in a normal sense) number x from the intersection of the set of descendants of n and k: %o A334230 up_to = 105; %o A334230 buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); } %o A334230 vdescsets = buildWdescsets(up_to); %o A334230 A334230tr(n,k) = vecmax(setintersect(vdescsets[n],vdescsets[k])); %o A334230 A334230list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334230tr(n,k))); (v); }; %o A334230 v334230 = A334230list(up_to); %o A334230 A334230(n) = v334230[n]; \\ _Antti Karttunen_, Apr 19 2020 %Y A334230 Cf. A332809, A333123, A334184, A334231. %K A334230 nonn,tabl,look %O A334230 1,3 %A A334230 _Peter Kagey_, _Antti Karttunen_, and _Michael De Vlieger_, Apr 19 2020