This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334231 #37 Aug 12 2022 19:21:29 %S A334231 1,2,2,3,3,3,4,4,6,4,5,5,15,5,5,6,6,6,6,15,6,7,7,7,7,35,7,7,8,8,12,8, %T A334231 10,12,14,8,9,9,9,9,45,9,21,18,9,10,10,15,10,10,15,35,10,45,10,11,11, %U A334231 33,11,11,33,77,11,99,11,11,12,12,12,12,15,12,14,12 %N A334231 Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n. %C A334231 The poset of the positive integers is defined by covering relations "n covers (n - n/p)" for all divisors p of n. %C A334231 n appears A332809(n) times in row n. %H A334231 Peter Kagey, <a href="/A334231/b334231.txt">Table of n, a(n) for n = 1..10011</a> (first 141 rows, flattened) %H A334231 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/3640072/121988">Does a graded poset on the positive integers generated from subtracting factors define a lattice?</a> %H A334231 Wikipedia, <a href="https://en.wikipedia.org/wiki/Semilattice">Semilattice</a> %F A334231 T(n,1) = T(n,n) = n. T(n, 2) = n for n >= 2. %F A334231 T(x,y) <= lcm(x,y) for any x,y because x is in same chain with lcm(x,y), and y is in same chain with lcm(x,y). %F A334231 Moreover, empirically it looks like T(x,y) divides lcm(x,y). %e A334231 The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc. %e A334231 15 %e A334231 _/ \_ %e A334231 / \ %e A334231 10 12 %e A334231 | \_ _/ | %e A334231 | \ / | %e A334231 5 8 6 %e A334231 \_ | _/| %e A334231 \_|_/ | %e A334231 4 3 %e A334231 | _/ %e A334231 |_/ %e A334231 2 %e A334231 | %e A334231 | %e A334231 1 %e A334231 Triangle begins: %e A334231 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A334231 ---+------------------------------------------- %e A334231 1 | 1 %e A334231 2 | 2 2 %e A334231 3 | 3 3 3 %e A334231 4 | 4 4 6 4 %e A334231 5 | 5 5 15 5 5 %e A334231 6 | 6 6 6 6 15 6 %e A334231 7 | 7 7 7 7 35 7 7 %e A334231 8 | 8 8 12 8 10 12 14 8 %e A334231 9 | 9 9 9 9 45 9 21 18 9 %e A334231 10 | 10 10 15 10 10 15 35 10 45 10 %e A334231 11 | 11 11 33 11 11 33 77 11 99 11 11 %e A334231 12 | 12 12 12 12 15 12 14 12 18 15 33 12 %e A334231 13 | 13 13 13 13 65 13 91 13 39 65 143 13 13 %e A334231 14 | 14 14 14 14 35 14 14 14 21 35 77 14 91 14 %o A334231 (PARI) %o A334231 \\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants: %o A334231 up_to = 105; %o A334231 buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); } %o A334231 vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here! %o A334231 A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i))); %o A334231 A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); }; %o A334231 v334231 = A334231list(up_to); %o A334231 A334231(n) = v334231[n]; \\ _Antti Karttunen_, Apr 19 2020 %Y A334231 Cf. A051173, A332809, A333123, A334184, A334230. %K A334231 nonn,tabl %O A334231 1,2 %A A334231 _Peter Kagey_, Apr 19 2020