cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334232 T(n, k) is the number of steps from the point (0, 0) to the point (k, n) along the H-order curve; a negative value corresponds to moving backwards; square array T(n, k), n, k >= 0 read by antidiagonals downwards.

This page as a plain text file.
%I A334232 #21 Jan 05 2024 12:56:41
%S A334232 0,1,-1,4,2,-2,5,3,-5,-3,12,6,-6,-4,-12,13,11,7,-7,-11,-13,16,14,10,8,
%T A334232 -8,-10,-14,17,15,23,9,-23,-9,-17,-15,48,18,22,24,-24,-22,-18,-16,-48,
%U A334232 49,47,19,21,25,-25,-21,-19,-47,-49,52,50,46,20,28,26,-26,-20
%N A334232 T(n, k) is the number of steps from the point (0, 0) to the point (k, n) along the H-order curve; a negative value corresponds to moving backwards; square array T(n, k), n, k >= 0 read by antidiagonals downwards.
%C A334232 The H-order curve is built as follows:
%C A334232 - we start we a unit square H_0 oriented counterclockwise, the origin being at the left bottom corner:
%C A334232          +---<---+
%C A334232          |       |
%C A334232          v       ^
%C A334232          |       |
%C A334232          O--->---+
%C A334232 - the configuration H_{k+1} is obtained by connecting four copies of the configuration H_k as follows:
%C A334232              |   |                               |   |
%C A334232          .   +   +   .                       .   +   +   .
%C A334232      H_k     ^   v     H_k                       ^   v
%C A334232          .   +   +   .                       .   +   +   .
%C A334232              |   |                               |   |
%C A334232     -+->-+---+   +---+->-+-             -+->-+   +-<-+   +->-+-
%C A334232                                 -->          v           ^
%C A334232     -+-<-+---+   +---+-<-+-             -+-<-+   +->-+   +-<-+-
%C A334232              |   |                               |   |
%C A334232          .   +   +   .                       .   +   +   .
%C A334232      H_k     ^   v     H_k                       ^   v
%C A334232          .   +   +   .                       .   +   +   .
%C A334232              |   |                               |   |
%C A334232 - the H-order curve corresponds to the limit of H_k as k tends to infinity,
%C A334232 - the H-order curve visits once every lattice points with nonnegative coordinates and has a single connected component.
%H A334232 Rémy Sigrist, <a href="/A334232/b334232.txt">Table of n, a(n) for n = 0..5049</a>
%H A334232 GeoWave Developper Guide, <a href="http://locationtech.github.io/geowave/devguide.html#spatial-index">Spatial Index</a>
%H A334232 Rémy Sigrist, <a href="/A334232/a334232.png">Representation of H_k for k = 0..5</a>
%H A334232 Rémy Sigrist, <a href="/A334232/a334232.gp.txt">PARI program for A334232</a>
%e A334232 Square array starts:
%e A334232   n\k|    0    1    2    3    4    5    6    7
%e A334232   ---+----------------------------------------
%e A334232     0|    0....1    4....5   12...13   16...17
%e A334232      |    |    |    |    |    |    |    |    |
%e A334232     1|   -1    2....3    6   11   14...15   18
%e A334232      |    |              |    |              |
%e A334232     2|   -2   -5...-6    7   10   23...22   19
%e A334232      |    |    |    |    |    |    |    |    |
%e A334232     3|   -3...-4   -7    8....9   24   21...20
%e A334232      |              |              |
%e A334232     4|  -12..-11   -8  -23..-24   25   28...29
%e A334232      |    |    |    |    |    |    |    |    |
%e A334232     5|  -13  -10...-9  -22  -25   26...27   30
%e A334232      |    |              |    |              |
%e A334232     6|  -14  -17..-18  -21  -26  -29..-30   31
%e A334232      |    |    |    |    |    |    |    |    |
%e A334232     7|  -15..-16  -19..-20  -27..-28  -31   32
%o A334232 (PARI) See Links section.
%Y A334232 See A334188 for a similar sequence.
%Y A334232 See A334233, A334234, A334235 and A334236 for the coordinates of the curve.
%K A334232 sign,tabl
%O A334232 0,4
%A A334232 _Rémy Sigrist_, Apr 19 2020