A334245 Let S = A061228, T = A070229, and F = S o T (where o denotes composition). Then a(n) is the least number in the intersection of the sequences F^k(n) and F^k(S(n)), k>=0, or the intersection of the sequences T(F^k(n)) and T(F^k(S(n))), k>=0, or 0 if these intersections are empty.
12, 12, 12, 15, 12, 30, 15, 21, 15, 77, 21, 77, 30, 77, 30, 77, 30, 57, 77, 30, 77, 91, 77, 77, 77, 77, 35, 105, 77, 133, 77, 91, 77, 60, 77, 111, 57, 77, 77, 133, 77, 165, 91, 65, 91, 147, 60, 105, 65, 70, 65, 165, 77, 105, 105, 91, 105, 180, 133, 231, 133, 91, 105, 105, 105, 234, 105, 147, 91
Offset: 2
Examples
For n=5, 15 = T(F(5)) = T(S(5)) so a(5) = 15. For n=6, 12 = F(6) = F(S(6)) so a(6) = 12. For n=10, 15 = T(10) = T(F(10)) so a(10) = 15.
Links
- Robert Israel, Table of n, a(n) for n = 2..6042
- A. Sada et al., Will this pattern continue, Discussion in SeqFan mailing list, Apr 2020.
- Bernard and Blandine Schott, Network with terms < 100.
Programs
-
Maple
S:= x -> x + min(numtheory:-factorset(x)): T:= x -> x + max(numtheory:-factorset(x)): f:= proc(n) local s,t,i,j,ct; s:= S(n); i:= 0; t:= T(n); j:= 1; for ct from 1 to 1000 do if s = t and i=j then return s fi; if s <= t then if i = 0 then s:= T(s); i:= 1 else s:= S(s); i:= 0 fi elif j = 0 then t:= T(t); j:= 1 else t:= S(t); j:= 0 fi od; 0 end proc: map(f, [$2..100]);
-
Mathematica
S[x_] := x + FactorInteger[x][[1, 1]]; T[x_] := x + FactorInteger[x][[-1, 1]]; f[n_] := Module[{s = S[n], t = T[n], i = 0, j = 1, ct}, For[ct = 1, ct <= 1000, ct++, If[s == t && i == j, Return[s]]; If[s <= t, If[i == 0, s = T[s]; i = 1, s = S[s]; i = 0], If[j == 0, t = T[t]; j = 1, t = S[t]; j = 0]]]; 0]; f /@ Range[2, 100] (* Jean-François Alcover, Aug 15 2020, after Maple *)
Formula
a(2^m+2) = a(2^m). - Bernard Schott, Jun 27 2020
Comments