This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334252 #16 Apr 24 2020 01:02:34 %S A334252 1,2,5,44,2179,1362585,75953166947,14087646640499308474 %N A334252 Number of closure operators on a set of n elements which satisfy the T_0 separation axiom. %C A334252 The T_0 axiom states that the closure of {x} and {y} are different for distinct x and y. %H A334252 R. S. R. Myers, J. Adámek, S. Milius, and H. Urbat, <a href="https://doi.org/10.1016/j.tcs.2015.03.035">Coalgebraic constructions of canonical nondeterministic automata</a>, Theoretical Computer Science, 604 (2015), 81-101. %H A334252 B. Venkateswarlu and U. M. Swamy, <a href="https://doi.org/10.1134/S1995080218090329">T_0-Closure Operators and Pre-Orders</a>, Lobachevskii Journal of Mathematics, 39 (2018), 1446-1452. %F A334252 a(n) = Sum_{k=0..n} Stirling1(n,k) * A102896(k). - _Andrew Howroyd_, Apr 20 2020 %e A334252 The a(0) = 1 through a(2) = 5 set-systems of closed sets: %e A334252 {{}} {{}} {{1,2},{1}} %e A334252 {{1},{}} {{1,2},{2}} %e A334252 {{1,2},{1},{}} %e A334252 {{1,2},{2},{}} %e A334252 {{1,2},{1},{2},{}} %Y A334252 The number of all closure operators is given in A102896. %Y A334252 For strict T0 closure operators, see A334253. %Y A334252 For T1 closure operators, see A334254. %Y A334252 Cf. A326943, A326944, A326945. %K A334252 nonn,more %O A334252 0,2 %A A334252 _Joshua Moerman_, Apr 20 2020 %E A334252 a(6)-a(7) from _Andrew Howroyd_, Apr 20 2020