This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334254 #27 Feb 16 2025 08:34:00 %S A334254 1,2,1,8,545,702525,66960965307 %N A334254 Number of closure operators on a set of n elements which satisfy the T_1 separation axiom. %C A334254 The T_1 axiom states that all singleton sets {x} are closed. %C A334254 For n>1, this property implies strictness (meaning that the empty set is closed). %H A334254 Dmitry I. Ignatov, <a href="http://arxiv.org/abs/2209.12256">On the Cryptomorphism between Davis' Subset Lattices, Atomic Lattices, and Closure Systems under T1 Separation Axiom</a>, arXiv:2209.12256 [cs.DM], 2022. %H A334254 Dmitry I. Ignatov, <a href="https://github.com/dimachine/ClosureSeparation/">Supporting iPython code for counting closure systems w.r.t. the T_1 separation axiom</a>, Github repository %H A334254 Dmitry I. Ignatov, <a href="/A334254/a334254.pdf">PDF of the supporting iPython notebook</a> %H A334254 S. Mapes, <a href="https://www3.nd.edu/~smapes1/FALRMI.pdf">Finite atomic lattices and resolutions of monomial ideals</a>, J. Algebra, 379 (2013), 259-276. %H A334254 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeparationAxioms.html">Separation Axioms</a> %H A334254 Wikipedia, <a href="http://en.wikipedia.org/wiki/Separation_axiom">Separation Axiom</a> %e A334254 The a(3) = 8 set-systems of closed sets: %e A334254 {{1,2,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,2},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{2,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,2},{1,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,2},{2,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,3},{2,3},{1},{2},{3},{}} %e A334254 {{1,2,3},{1,2},{1,3},{2,3},{1},{2},{3},{}} %Y A334254 The number of all closure operators is given in A102896. %Y A334254 For T_0 closure operators, see A334252. %Y A334254 For strict T_1 closure operators, see A334255, the only difference is a(1). %Y A334254 Cf. A326960, A326961, A326979. %K A334254 nonn,more,hard %O A334254 0,2 %A A334254 _Joshua Moerman_, Apr 20 2020 %E A334254 a(6) from _Dmitry I. Ignatov_, Jul 03 2022