This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334255 #26 Feb 16 2025 08:34:00 %S A334255 1,1,1,8,545,702525,66960965307 %N A334255 Number of strict closure operators on a set of n elements which satisfy the T_1 separation axiom. %C A334255 The T_1 axiom states that all singleton sets {x} are closed. %C A334255 A closure operator is strict if the empty set is closed. %H A334255 Dmitry I. Ignatov, <a href="https://github.com/dimachine/ClosureSeparation/">Supporting iPython code for counting closure systems w.r.t. the T_1 separation axiom</a>, Github repository %H A334255 Dmitry I. Ignatov, <a href="/A334255/a334255.ipynb.txt">Supporting iPython notebook</a> %H A334255 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeparationAxioms.html">Separation Axioms</a> %H A334255 Wikipedia, <a href="http://en.wikipedia.org/wiki/Separation_axiom">Separation Axiom</a> %e A334255 The a(3) = 8 set-systems of closed sets: %e A334255 {{1,2,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,2},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{2,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,2},{1,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,2},{2,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,3},{2,3},{1},{2},{3},{}} %e A334255 {{1,2,3},{1,2},{1,3},{2,3},{1},{2},{3},{}} %t A334255 Table[Length[ %t A334255 Select[Subsets[Subsets[Range[n]]], %t A334255 And[MemberQ[#, {}], MemberQ[#, Range[n]], %t A334255 SubsetQ[#, Intersection @@@ Tuples[#, 2]], %t A334255 SubsetQ[#, Map[{#} &, Range[n]]]] &]], {n, 0, 4}] (* _Tian Vlasic_, Jul 29 2022 *) %Y A334255 The number of all strict closure operators is given in A102894. %Y A334255 For all strict T_0 closure operators, see A334253. %Y A334255 For T_1 closure operators, see A334254. %Y A334255 Cf. A326960, A326961, A326979. %K A334255 nonn,more %O A334255 0,4 %A A334255 _Joshua Moerman_, Apr 24 2020 %E A334255 a(6) from _Dmitry I. Ignatov_, Jul 03 2022