This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334257 #29 Apr 28 2020 13:40:48 %S A334257 1,1,4,35,1,545,30,1,13250,1101,48,1,463899,51474,2956,70,1,22106253, %T A334257 3070434,217271,7545,96,1,1375915620,229528818,19372881,864632,20322, %U A334257 126,1,108386009099,21107789247,2070917370,113587335,3530099,61089,160,1 %N A334257 Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}. %C A334257 An ordered pair of n-permutations ((a_1,a_2,...,a_n),(b_1,b_2,...,b_n)) has a common double descent at position i, 1<=i<=n-2, if a_i > a_i+1 > a_i+2 and b_i > b_i+1 > b_i+2. %D A334257 R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366. %H A334257 Alois P. Heinz, <a href="/A334257/b334257.txt">Rows n = 0..60, flattened</a> %H A334257 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; page 209. %e A334257 T(4,1) = 30: There are 9 such ordered pairs formed from the permutations 3421,2431,1432. There are 9 such ordered pairs formed from the permutations 4312,4213,3214. Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent. 9+9+12 = 30. %e A334257 Triangle T(n,k) begins: %e A334257 1; %e A334257 1; %e A334257 4; %e A334257 35, 1; %e A334257 545, 30, 1; %e A334257 13250, 1101, 48, 1; %e A334257 463899, 51474, 2956, 70, 1; %e A334257 ... %p A334257 b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1, %p A334257 add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+ %p A334257 add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+ %p A334257 add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+ %p A334257 add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u))) %p A334257 end: %p A334257 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)): %p A334257 seq(T(n), n=0..10); # _Alois P. Heinz_, Apr 26 2020 %t A334257 nn = 8; a = Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &, %t A334257 Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid %Y A334257 Column k=0 gives A334412. %Y A334257 Cf. A192721, A162975. %K A334257 nonn,tabf %O A334257 0,3 %A A334257 _Geoffrey Critzer_, Apr 26 2020