A334259 Self-locating numbers within the Copeland-Erdős constant: numbers k such that the string k is at the 0-indexed position k in the decimal digits of the concatenation of the prime numbers as a decimal sequence.
37, 3790, 4991, 38073, 908979, 8378611, 62110713, 87126031, 8490820681, 9514920697, 24717215429, 784191725098, 836390891918
Offset: 1
Examples
37 is a term because the 3 digit of 37 appears in the 37th 0-indexed position of the Copeland-Erdős constant.
Programs
-
Mathematica
q=23; p=3; dq=2; dn=dp=1; L={}; n=-1; pP=nP=10; While[++n < 10^6, If[n == nP, nP *= 10; dn++]; While[ q
pP, pP *= 10; dp++]; q = q pP + p; dq += dp]; If[n == Floor[ q/10^(dq - dn)], Print@ AppendTo[L, n]]; q = Mod[q, 10^(--dq)]]; L (* Giovanni Resta, Apr 21 2020 *) -
Python
import sympy from sympy import sieve def digits_at(ss, n): ''' Extracts len(str(n)) digits at position n.''' t = len(str(n)) s = ss[n:n+t] if s == '': return -1 return int(s) def self_locating(ss, n): return digits_at(ss,n) == n SS = "" for p in sieve.primerange(2, 100000): SS += str(p) for i in range(100000): if self_locating(SS, i): print(i,end=",")
Extensions
a(3)-a(13) from Giovanni Resta, Apr 22 2020
Comments