cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334263 E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} prime(k-1) * A(x)^k / k!.

This page as a plain text file.
%I A334263 #6 Apr 21 2020 04:18:16
%S A334263 1,-2,9,-65,653,-8432,133190,-2488589,53690330,-1313508417,
%T A334263 35929413073,-1086587503799,35998774583176,-1296581783771904,
%U A334263 50442455219483951,-2108020240791081088,94179374365406507609,-4479409651990684350045,225977974437623955594777
%N A334263 E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} prime(k-1) * A(x)^k / k!.
%C A334263 Exponential reversion of A008578 (1 together with primes).
%H A334263 Vaclav Kotesovec, <a href="/A334263/b334263.txt">Table of n, a(n) for n = 1..200</a>
%H A334263 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A334263 a(n) ~ -(-1)^n * n^(n-1) / (sqrt(t) * r^(n - 1/2) * exp(n)), where t = Sum_{k>=0} prime(k+1) * s^k / k! = 0.7444466039931411886049681349033665583265654464..., s = -0.835708320094278846648094879804371313211261254223... is the root of the equation Sum_{k>=1} prime(k) * s^k / k! = -1 and r = -s - Sum_{k>=2} prime(k-1) * s^k / k! = 0.34673082109620141270389189466020238662524394743... - _Vaclav Kotesovec_, Apr 21 2020
%t A334263 nmax = 19; CoefficientList[InverseSeries[Series[x + Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
%Y A334263 Cf. A007296, A008578.
%K A334263 sign
%O A334263 1,2
%A A334263 _Ilya Gutkovskiy_, Apr 20 2020