A334266 Numbers k such that the k-th composition in standard order is both a reversed Lyndon word and a co-Lyndon word.
0, 1, 2, 4, 5, 8, 9, 11, 16, 17, 18, 19, 21, 23, 32, 33, 34, 35, 37, 39, 43, 47, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 85, 87, 91, 95, 128, 129, 130, 131, 132, 133, 135, 137, 138, 139, 141, 143, 146, 147, 149, 151, 155, 159, 171, 173, 175, 183, 191
Offset: 1
Keywords
Examples
The sequence of all reversed Lyndon co-Lyndon words begins: 0: () 37: (3,2,1) 91: (2,1,2,1,1) 1: (1) 39: (3,1,1,1) 95: (2,1,1,1,1,1) 2: (2) 43: (2,2,1,1) 128: (8) 4: (3) 47: (2,1,1,1,1) 129: (7,1) 5: (2,1) 64: (7) 130: (6,2) 8: (4) 65: (6,1) 131: (6,1,1) 9: (3,1) 66: (5,2) 132: (5,3) 11: (2,1,1) 67: (5,1,1) 133: (5,2,1) 16: (5) 68: (4,3) 135: (5,1,1,1) 17: (4,1) 69: (4,2,1) 137: (4,3,1) 18: (3,2) 71: (4,1,1,1) 138: (4,2,2) 19: (3,1,1) 73: (3,3,1) 139: (4,2,1,1) 21: (2,2,1) 74: (3,2,2) 141: (4,1,2,1) 23: (2,1,1,1) 75: (3,2,1,1) 143: (4,1,1,1,1) 32: (6) 77: (3,1,2,1) 146: (3,3,2) 33: (5,1) 79: (3,1,1,1,1) 147: (3,3,1,1) 34: (4,2) 85: (2,2,2,1) 149: (3,2,2,1) 35: (4,1,1) 87: (2,2,1,1,1) 151: (3,2,1,1,1)
Crossrefs
The version for binary expansion is A334267.
Compositions of this type are counted by A334269.
Normal sequences of this type are counted by A334270.
Necklace compositions of this type are counted by A334271.
Binary Lyndon words are counted by A001037.
Lyndon compositions are counted by A059966.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Reversed Lyndon words are A334265.
- Co-Lyndon words are A326774.
- Reversed co-Lyndon words are A328596.
- Length of Lyndon factorization is A329312.
- Length of Lyndon factorization of reverse is A334297.
- Length of co-Lyndon factorization is A334029.
- Length of co-Lyndon factorization of reverse is A329313.
- Distinct rotations are counted by A333632.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; lynQ[q_]:=Length[q]==0||Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And]; colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; Select[Range[0,100],lynQ[Reverse[stc[#]]]&&colynQ[stc[#]]&]
Comments