This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334267 #9 Apr 25 2020 08:40:45 %S A334267 0,1,2,4,6,8,12,14,16,20,24,26,28,30,32,40,48,52,56,58,60,62,64,72,80, %T A334267 84,96,100,104,106,108,112,116,118,120,122,124,126,128,144,160,164, %U A334267 168,192,200,208,212,216,218,224,228,232,234,236,240,244,246,248,250 %N A334267 Numbers k such that the k-th composition in standard order is both a Lyndon word and a reversed co-Lyndon word. %C A334267 Also numbers whose binary expansion is both a reversed Lyndon word and a co-Lyndon word. %C A334267 A Lyndon word is a finite sequence of positive integers that is lexicographically strictly less than all of its cyclic rotations. Co-Lyndon is defined similarly, except with strictly greater instead of strictly less. %C A334267 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %F A334267 Intersection of A275692 and A328596. %e A334267 The sequence of all reversed co-Lyndon Lyndon words begins: %e A334267 0: () 56: (1,1,4) 124: (1,1,1,1,3) %e A334267 1: (1) 58: (1,1,2,2) 126: (1,1,1,1,1,2) %e A334267 2: (2) 60: (1,1,1,3) 128: (8) %e A334267 4: (3) 62: (1,1,1,1,2) 144: (3,5) %e A334267 6: (1,2) 64: (7) 160: (2,6) %e A334267 8: (4) 72: (3,4) 164: (2,3,3) %e A334267 12: (1,3) 80: (2,5) 168: (2,2,4) %e A334267 14: (1,1,2) 84: (2,2,3) 192: (1,7) %e A334267 16: (5) 96: (1,6) 200: (1,3,4) %e A334267 20: (2,3) 100: (1,3,3) 208: (1,2,5) %e A334267 24: (1,4) 104: (1,2,4) 212: (1,2,2,3) %e A334267 26: (1,2,2) 106: (1,2,2,2) 216: (1,2,1,4) %e A334267 28: (1,1,3) 108: (1,2,1,3) 218: (1,2,1,2,2) %e A334267 30: (1,1,1,2) 112: (1,1,5) 224: (1,1,6) %e A334267 32: (6) 116: (1,1,2,3) 228: (1,1,3,3) %e A334267 40: (2,4) 118: (1,1,2,1,2) 232: (1,1,2,4) %e A334267 48: (1,5) 120: (1,1,1,4) 234: (1,1,2,2,2) %e A334267 52: (1,2,3) 122: (1,1,1,2,2) 236: (1,1,2,1,3) %e A334267 The sequence of terms together with their binary expansions and binary indices begins: %e A334267 0: 0 ~ {} 56: 111000 ~ {4,5,6} %e A334267 1: 1 ~ {1} 58: 111010 ~ {2,4,5,6} %e A334267 2: 10 ~ {2} 60: 111100 ~ {3,4,5,6} %e A334267 4: 100 ~ {3} 62: 111110 ~ {2,3,4,5,6} %e A334267 6: 110 ~ {2,3} 64: 1000000 ~ {7} %e A334267 8: 1000 ~ {4} 72: 1001000 ~ {4,7} %e A334267 12: 1100 ~ {3,4} 80: 1010000 ~ {5,7} %e A334267 14: 1110 ~ {2,3,4} 84: 1010100 ~ {3,5,7} %e A334267 16: 10000 ~ {5} 96: 1100000 ~ {6,7} %e A334267 20: 10100 ~ {3,5} 100: 1100100 ~ {3,6,7} %e A334267 24: 11000 ~ {4,5} 104: 1101000 ~ {4,6,7} %e A334267 26: 11010 ~ {2,4,5} 106: 1101010 ~ {2,4,6,7} %e A334267 28: 11100 ~ {3,4,5} 108: 1101100 ~ {3,4,6,7} %e A334267 30: 11110 ~ {2,3,4,5} 112: 1110000 ~ {5,6,7} %e A334267 32: 100000 ~ {6} 116: 1110100 ~ {3,5,6,7} %e A334267 40: 101000 ~ {4,6} 118: 1110110 ~ {2,3,5,6,7} %e A334267 48: 110000 ~ {5,6} 120: 1111000 ~ {4,5,6,7} %e A334267 52: 110100 ~ {3,5,6} 122: 1111010 ~ {2,4,5,6,7} %t A334267 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A334267 lynQ[q_]:=Length[q]==0||Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And]; %t A334267 colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; %t A334267 Select[Range[0,100],colynQ[Reverse[stc[#]]]&&lynQ[stc[#]]&] %Y A334267 Compositions of this type are counted by A334269. %Y A334267 Normal sequences of this type are counted by A334270. %Y A334267 Necklaces of this type are counted by A334271. %Y A334267 Necklaces of this type are ranked by A334274. %Y A334267 Binary (or reversed binary) Lyndon words are counted by A001037. %Y A334267 Lyndon compositions are counted by A059966. %Y A334267 Lyndon words whose reverse is not co-Lyndon are counted by A329324 %Y A334267 Reversed Lyndon co-Lyndon compositions are ranked by A334266. %Y A334267 All of the following pertain to compositions in standard order (A066099): %Y A334267 - Length is A000120. %Y A334267 - Necklaces are A065609. %Y A334267 - Sum is A070939. %Y A334267 - Reverse is A228351 (triangle). %Y A334267 - Strict compositions are A233564. %Y A334267 - Constant compositions are A272919. %Y A334267 - Lyndon words are A275692. %Y A334267 - Reversed Lyndon words are A334265. %Y A334267 - Co-Lyndon words are A326774. %Y A334267 - Reversed co-Lyndon words are A328596. %Y A334267 - Length of Lyndon factorization is A329312. %Y A334267 - Length of Lyndon factorization of reverse is A334297. %Y A334267 - Length of co-Lyndon factorization is A334029. %Y A334267 - Length of co-Lyndon factorization of reverse is A329313. %Y A334267 - Distinct rotations are counted by A333632. %Y A334267 - Lyndon factorizations are counted by A333940. %Y A334267 - Co-Lyndon factorizations are counted by A333765. %Y A334267 Cf. A000740, A008965, A328594, A328595, A333764, A333943, A334272, A334273. %K A334267 nonn %O A334267 1,3 %A A334267 _Gus Wiseman_, Apr 22 2020