This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334275 #30 Jun 04 2020 09:42:13 %S A334275 1,0,0,0,0,1,11,9,7,5,6,7,10,11,14,18,22,26,34,40,50,61,74,89,111,131, %T A334275 159,192,231,274,332,392,469,557,661,780,928,1088,1285,1511,1776,2076, %U A334275 2439,2843,3324,3873,4511,5238,6096,7057,8183,9466 %N A334275 Number of unlabeled connected graphs with n vertices such that every vertex has exactly 2 vertices at distance 2. %C A334275 Gaar and Krenn call these graphs 2-metamour-regular. %H A334275 E. Gaar and D. Krenn, <a href="http://arxiv.org/abs/2005.14121">Metamour-regular Polyamorous Relationships and Graphs</a>, arXiv:2005.14121 [math.CO], 2020. %F A334275 a(n) = p_3(n) + 1 for n >= 9 with p_3(n) being the number of integer partitions of n with parts at least 3 (A008483). %e A334275 For n = 8 vertices, there exist the connected 2-metamour-regular graphs %e A334275 - c(C_8), c(C_5) join c(C_3), c(C_4) join c(C_4), %e A334275 - C_8 and %e A334275 - 3 exceptional graphs, %e A334275 where C_i is the cycle graph on i vertices, and c(G) is the complement graph of G. %e A334275 Therefore the unlabeled total is a(8) = 7. %o A334275 (SageMath) [(len(Partitions(n, min_part=3)) if n >= 6 else 0) %o A334275 + (1 if n >= 5 else 0) %o A334275 + {0: 1, 6: 8, 7: 6, 8: 3}.get(n, 0) %o A334275 for n in srange(52)] %o A334275 (PARI) a(n)=if(n<9,[1, 0, 0, 0, 0, 1, 11, 9, 7, 5][n+1], numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3)+1) \\ _Charles R Greathouse IV_, Apr 22 2020 %Y A334275 Cf. A008483. %K A334275 nonn %O A334275 0,7 %A A334275 _Daniel Krenn_, Apr 21 2020