This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334278 #34 Feb 16 2025 08:34:00 %S A334278 0,1,0,-1,1,0,-3,6,-4,1,0,-133,423,-572,441,-214,66,-12,1,0,-3040575, %T A334278 14412776,-31680240,43389646,-41821924,30276984,-17100952,7701952, %U A334278 -2794896,818036,-191600,35264,-4936,496,-32,1 %N A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n. %C A334278 The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube. %H A334278 Peter Kagey, <a href="/A334278/b334278.txt">Table of n, a(n) for n = 0..68</a> (rows 0..5; row 5 from Andrew Howroyd's file) %H A334278 Andrew Howroyd, <a href="/A334159/a334159.txt">Chromatic Polynomials of Hypercubes Q_0 to Q_5</a> %H A334278 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>. %H A334278 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a>. %F A334278 T(n,0) = 0. %F A334278 T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - _Andrew Howroyd_, Apr 25 2020 %e A334278 Table begins: %e A334278 n/k| 0 1 2 3 4 5 6 7 8 %e A334278 ---+------------------------------------------- %e A334278 0| 0, 1 %e A334278 1| 0, -1, 1 %e A334278 2| 0, -3, 6, -4, 1 %e A334278 3| 0, -133, 423, -572, 441, -214, 66, -12, 1 %p A334278 with(GraphTheory): with(SpecialGraphs): %p A334278 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( %p A334278 ChromaticPolynomial(HypercubeGraph(n), x)): %p A334278 seq(T(n), n=0..4); # _Alois P. Heinz_, Jan 14 2025 %t A334278 T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k] %Y A334278 Cf. A296914 is the reverse of row 3. %Y A334278 Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube. %Y A334278 Cf. A001787, A002378, A091940, A140986, A158348. %Y A334278 Cf. A334159, A334247, A334358. %K A334278 sign,tabf %O A334278 0,7 %A A334278 _Peter Kagey_, Apr 21 2020