cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334281 Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The 4-dimensional cross-polytope is sometimes called the 16-cell. It is one of the six convex regular 4-polytopes.

Crossrefs

Cf. A091940 (2-dimensional), A115400 (3-dimensional).
Cf. A334279.

Programs

  • PARI
    concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020

Formula

a(n) = n*(n - 1)*(n - 2)*(n - 3)*(465 - 392n + 125n^2 - 18n^3 + n^4).
a(n) = -2790n + 7467n^2 - 7852n^3 + 4300n^4 - 1346n^5 + 244n^6 - 24n^7 + n^8.
From Colin Barker, Apr 22 2020: (Start)
G.f.: 24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)