A334281 Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.
0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Wikipedia, Cross-polytope
- Wikipedia, TurĂ¡n graph
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
PARI
concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020
Formula
a(n) = n*(n - 1)*(n - 2)*(n - 3)*(465 - 392n + 125n^2 - 18n^3 + n^4).
a(n) = -2790n + 7467n^2 - 7852n^3 + 4300n^4 - 1346n^5 + 244n^6 - 24n^7 + n^8.
From Colin Barker, Apr 22 2020: (Start)
G.f.: 24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
Comments