A334293 First quadrisection of Padovan sequence.
1, 0, 2, 5, 16, 49, 151, 465, 1432, 4410, 13581, 41824, 128801, 396655, 1221537, 3761840, 11584946, 35676949, 109870576, 338356945, 1042002567, 3208946545, 9882257736, 30433357674, 93722435101, 288627200960, 888855064897, 2737314167775, 8429820731201, 25960439030624
Offset: 0
Examples
For n=3, a(3) = 2*a(2) + 3*a(1) + a(0) = 2*2 + 3*0 + 1 = 5.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 4.
- Index entries for linear recurrences with constant coefficients, signature (2,3,1).
Programs
-
PARI
Vec((1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3) + O(x^30)) \\ Colin Barker, Apr 27 2020
Formula
a(n) = A000931(4n).
a(n) = A099529(2n).
a(n) = Sum_{k=0..n} binomial(2*n-k-1, 2*k-1).
a(n) = 2*a(n-1)+3*a(n-2)+a(n-3), a(0)=1, a(1)=0, a(2)=2 for n>=3.
G.f.: (1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3). - Colin Barker, Apr 27 2020