This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334295 #38 Apr 27 2020 09:47:16 %S A334295 2,5,9,352,165421,356928514,795471483 %N A334295 Integers k such that the sum of k twin primes pairs starting from (5,7) is a perfect power. %e A334295 a(1) = 2 as 5+7 + 11+13 = 36 = 6^2; %e A334295 a(2) = 5 as 5+7 + 11+13 + 17+19 + 29+31 + 41+43 = 216 = 6^3. %e A334295 From _Michel Marcus_, Apr 27 2020: (Start) %e A334295 Table of results, with k, greatest prime and corresponding sum: %e A334295 2, 13, 36 = 6^2; %e A334295 5, 43, 216 = 6^3; %e A334295 9, 109, 900 = 30^2; %e A334295 352, 20749, 6290064 = 2508^2; %e A334295 165421, 32841799, 5048685437184 = 2246928^2. (End) %e A334295 From _Giovanni Resta_, Apr 27 2020: (Start) %e A334295 The next two entries of the table above are: %e A334295 356928514, 165800305423, 56622416174760209796 = 7524786786^2; %e A334295 795471483, 396030375733, 301922786495024336196 = 17375925486^2. (End) %o A334295 (PARI) lista(nn) = {my(s = 0, nb = 0); forprime(p=5, nn, if (isprime(p+2), s += 2*p+2; nb++; if (ispower(s), print1(nb, ", "));););} \\ _Michel Marcus_, Apr 22 2020 %Y A334295 Cf. A001097 (twin primes), A054735 (sum of twin prime pairs). %K A334295 nonn,more %O A334295 1,1 %A A334295 _Devansh Singh_, Apr 21 2020 %E A334295 a(4)-a(5) from _Michel Marcus_, Apr 22 2020 %E A334295 a(6) from _Jinyuan Wang_, Apr 24 2020 %E A334295 a(7) from _Giovanni Resta_, Apr 27 2020