This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334299 #10 Jun 04 2020 06:39:42 %S A334299 1,2,2,3,2,4,4,4,2,4,3,6,4,7,6,5,2,4,4,6,4,6,7,8,4,7,6,10,6,10,8,6,2, %T A334299 4,4,6,3,8,8,8,4,8,4,9,8,12,11,10,4,7,8,10,8,11,12,13,6,10,9,14,8,13, %U A334299 10,7,2,4,4,6,4,8,8,8,4,6,6,12,7,14,12,10,4 %N A334299 Number of distinct subsequences (not necessarily contiguous) of compositions in standard order (A066099). %C A334299 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %F A334299 a(n) = A334300(n) + 1. %e A334299 Triangle begins: %e A334299 1 %e A334299 2 %e A334299 2 3 %e A334299 2 4 4 4 %e A334299 2 4 3 6 4 7 6 5 %e A334299 2 4 4 6 4 6 7 8 4 7 6 10 6 10 8 6 %e A334299 If the k-th composition in standard order is c, then we say that the STC-number of c is k. The n-th column below lists the STC-numbers of the subsequences of the composition with STC-number n: %e A334299 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A334299 0 0 1 0 2 2 3 0 4 2 5 4 6 6 7 %e A334299 0 1 1 1 1 0 3 1 5 3 3 %e A334299 0 0 0 0 2 0 3 2 1 %e A334299 1 2 1 0 %e A334299 0 1 0 %e A334299 0 %t A334299 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A334299 Table[Length[Union[Subsets[stc[n]]]],{n,0,100}] %Y A334299 Row lengths are A011782. %Y A334299 Looking only at contiguous subsequences gives A124771. %Y A334299 Compositions where every subinterval has a different sum are A333222. %Y A334299 Knapsack compositions are A333223. %Y A334299 Contiguous positive subsequence-sums are counted by A333224. %Y A334299 Contiguous subsequence-sums are counted by A333257. %Y A334299 Disallowing empty subsequences gives A334300. %Y A334299 Subsequence-sums are counted by A334968. %Y A334299 Cf. A000120, A029931, A048793, A066099, A070939, A108917, A325676, A334967. %K A334299 nonn %O A334299 0,2 %A A334299 _Gus Wiseman_, Jun 01 2020