This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334300 #13 Mar 12 2025 17:14:14 %S A334300 0,1,1,2,1,3,3,3,1,3,2,5,3,6,5,4,1,3,3,5,3,5,6,7,3,6,5,9,5,9,7,5,1,3, %T A334300 3,5,2,7,7,7,3,7,3,8,7,11,10,9,3,6,7,9,7,10,11,12,5,9,8,13,7,12,9,6,1, %U A334300 3,3,5,3,7,7,7,3,5,5,11,6,13,11,9,3,7,6 %N A334300 Number of distinct nonempty subsequences (not necessarily contiguous) in the n-th composition in standard order (A066099). %C A334300 Looking only at contiguous subsequences, or restrictions to a subinterval, gives A124770. %C A334300 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A334300 John Tyler Rascoe, <a href="/A334300/b334300.txt">Table of n, a(n) for n = 0..8192</a> %F A334300 a(n) = A334299(n) - 1. %e A334300 Triangle begins: %e A334300 1 %e A334300 1 2 %e A334300 1 3 3 3 %e A334300 1 3 2 5 3 6 5 4 %e A334300 1 3 3 5 3 5 6 7 3 6 5 9 5 9 7 5 %e A334300 If the k-th composition in standard order is c, then we say that the STC-number of c is k. The n-th column below lists the STC-numbers of the nonempty subsequences of the composition with STC-number n: %e A334300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A334300 1 2 2 3 4 2 5 4 6 6 7 %e A334300 1 1 1 1 3 1 5 3 3 %e A334300 2 3 2 1 %e A334300 1 2 1 %e A334300 1 %t A334300 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A334300 Table[Length[Union[Rest[Subsets[stc[n]]]]],{n,0,100}] %o A334300 (Python) %o A334300 from itertools import combinations %o A334300 def comp(n): %o A334300 # see A357625 %o A334300 return %o A334300 def A334300(n): %o A334300 A,C = set(),comp(n) %o A334300 c = range(len(C)) %o A334300 for j in c: %o A334300 for k in combinations(c, j): %o A334300 A.add(tuple(C[i] for i in k)) %o A334300 return len(A) # _John Tyler Rascoe_, Mar 12 2025 %Y A334300 Row lengths are A011782. %Y A334300 Looking only at contiguous subsequences gives A124770. %Y A334300 The contiguous case with empty subsequences allowed is A124771. %Y A334300 Allowing empty subsequences gives A334299. %Y A334300 Compositions where every subinterval has a different sum are A333222. %Y A334300 Knapsack compositions are A333223. %Y A334300 Contiguous positive subsequence-sums are counted by A333224. %Y A334300 Contiguous subsequence-sums are counted by A333257. %Y A334300 Subsequence-sums are counted by A334968. %Y A334300 Cf. A000120, A029931, A048793, A066099, A070939, A108917, A325676, A334967. %K A334300 nonn,look,tabf %O A334300 0,4 %A A334300 _Gus Wiseman_, Jun 01 2020