cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.

This page as a plain text file.
%I A334301 #13 May 31 2020 07:09:36
%S A334301 1,2,1,1,3,2,1,1,1,1,4,2,2,3,1,2,1,1,1,1,1,1,5,3,2,4,1,2,2,1,3,1,1,2,
%T A334301 1,1,1,1,1,1,1,1,6,3,3,4,2,5,1,2,2,2,3,2,1,4,1,1,2,2,1,1,3,1,1,1,2,1,
%U A334301 1,1,1,1,1,1,1,1,1,7,4,3,5,2,6,1,3,2,2
%N A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.
%C A334301 This is the Abramowitz-Stegun ordering of integer partitions when they are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A036036.
%H A334301 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A334301 The sequence of all partitions in Abramowitz-Stegun order begins:
%e A334301   ()      (41)     (21111)   (31111)    (3221)
%e A334301   (1)     (221)    (111111)  (211111)   (3311)
%e A334301   (2)     (311)    (7)       (1111111)  (4211)
%e A334301   (11)    (2111)   (43)      (8)        (5111)
%e A334301   (3)     (11111)  (52)      (44)       (22211)
%e A334301   (21)    (6)      (61)      (53)       (32111)
%e A334301   (111)   (33)     (322)     (62)       (41111)
%e A334301   (4)     (42)     (331)     (71)       (221111)
%e A334301   (22)    (51)     (421)     (332)      (311111)
%e A334301   (31)    (222)    (511)     (422)      (2111111)
%e A334301   (211)   (321)    (2221)    (431)      (11111111)
%e A334301   (1111)  (411)    (3211)    (521)      (9)
%e A334301   (5)     (2211)   (4111)    (611)      (54)
%e A334301   (32)    (3111)   (22111)   (2222)     (63)
%e A334301 This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
%e A334301                             0
%e A334301                            (1)
%e A334301                         (2) (1,1)
%e A334301                     (3) (2,1) (1,1,1)
%e A334301             (4) (2,2) (3,1) (2,1,1) (1,1,1,1)
%e A334301   (5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)
%e A334301 Showing partitions as their Heinz numbers (see A334433) gives:
%e A334301    1
%e A334301    2
%e A334301    3   4
%e A334301    5   6   8
%e A334301    7   9  10  12  16
%e A334301   11  15  14  18  20  24  32
%e A334301   13  25  21  22  27  30  28  36  40  48  64
%e A334301   17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
%t A334301 Join@@Table[Sort[IntegerPartitions[n]],{n,0,8}]
%Y A334301 Lexicographically ordered reversed partitions are A026791.
%Y A334301 The version for reversed partitions (sum/length/lex) is A036036.
%Y A334301 Row lengths are A036043.
%Y A334301 Reverse-lexicographically ordered partitions are A080577.
%Y A334301 The version for compositions is A124734.
%Y A334301 Lexicographically ordered partitions are A193073.
%Y A334301 Sorting by Heinz number gives A296150, or A112798 for reversed partitions.
%Y A334301 Sorting first by sum, then by Heinz number gives A215366.
%Y A334301 Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
%Y A334301 Taking Heinz numbers gives A334433.
%Y A334301 The reverse-lexicographic version is A334439 (not A036037).
%Y A334301 Cf. A000041, A048793, A066099, A162247, A211992, A228100, A228351, A228531.
%K A334301 nonn,tabf
%O A334301 0,2
%A A334301 _Gus Wiseman_, Apr 29 2020