This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334302 #12 May 28 2020 05:03:05 %S A334302 1,2,1,1,3,1,2,1,1,1,4,2,2,1,3,1,1,2,1,1,1,1,5,2,3,1,4,1,2,2,1,1,3,1, %T A334302 1,1,2,1,1,1,1,1,6,3,3,2,4,1,5,2,2,2,1,2,3,1,1,4,1,1,2,2,1,1,1,3,1,1, %U A334302 1,1,2,1,1,1,1,1,1,7,3,4,2,5,1,6,2,2,3 %N A334302 Irregular triangle read by rows where row k is the k-th reversed integer partition, if reversed partitions are sorted first by sum, then by length, and finally reverse-lexicographically. %H A334302 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A334302 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A334302 The sequence of all reversed partitions begins: %e A334302 () (1,4) (1,1,1,1,2) %e A334302 (1) (1,2,2) (1,1,1,1,1,1) %e A334302 (2) (1,1,3) (7) %e A334302 (1,1) (1,1,1,2) (3,4) %e A334302 (3) (1,1,1,1,1) (2,5) %e A334302 (1,2) (6) (1,6) %e A334302 (1,1,1) (3,3) (2,2,3) %e A334302 (4) (2,4) (1,3,3) %e A334302 (2,2) (1,5) (1,2,4) %e A334302 (1,3) (2,2,2) (1,1,5) %e A334302 (1,1,2) (1,2,3) (1,2,2,2) %e A334302 (1,1,1,1) (1,1,4) (1,1,2,3) %e A334302 (5) (1,1,2,2) (1,1,1,4) %e A334302 (2,3) (1,1,1,3) (1,1,1,2,2) %e A334302 This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. %e A334302 0 %e A334302 (1) %e A334302 (2) (1,1) %e A334302 (3) (1,2) (1,1,1) %e A334302 (4) (2,2) (1,3) (1,1,2) (1,1,1,1) %e A334302 (5) (2,3) (1,4) (1,2,2) (1,1,3) (1,1,1,2) (1,1,1,1,1) %e A334302 Showing partitions as their Heinz numbers (see A334435) gives: %e A334302 1 %e A334302 2 %e A334302 3 4 %e A334302 5 6 8 %e A334302 7 9 10 12 16 %e A334302 11 15 14 18 20 24 32 %e A334302 13 25 21 22 27 30 28 36 40 48 64 %e A334302 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128 %t A334302 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A334302 Join@@Table[Sort[Sort/@IntegerPartitions[n],revlensort],{n,0,8}] %Y A334302 Row lengths are A036043. %Y A334302 Lexicographically ordered reversed partitions are A026791. %Y A334302 The dual ordering (sum/length/lex) of reversed partitions is A036036. %Y A334302 Reverse-lexicographically ordered partitions are A080577. %Y A334302 Sorting reversed partitions by Heinz number gives A112798. %Y A334302 Lexicographically ordered partitions are A193073. %Y A334302 Graded Heinz numbers are A215366. %Y A334302 Ignoring length gives A228531. %Y A334302 Sorting partitions by Heinz number gives A296150. %Y A334302 The version for compositions is A296774. %Y A334302 The dual ordering (sum/length/lex) of non-reversed partitions is A334301. %Y A334302 Taking Heinz numbers gives A334435. %Y A334302 The version for regular (non-reversed) partitions is A334439 (not A036037). %Y A334302 Cf. A000041, A048793, A066099, A080576, A124734, A162247, A211992, A228100, A228351. %K A334302 nonn,tabf %O A334302 0,2 %A A334302 _Gus Wiseman_, Apr 30 2020