This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334312 #32 May 17 2020 13:51:32 %S A334312 1,2,-1,3,0,-2,4,-1,-1,-1,5,0,0,0,-4,6,-1,-2,-1,-3,2,7,0,-1,0,-2,3,-6, %T A334312 8,-1,0,-1,-1,2,-5,-1,9,0,-2,0,0,0,-4,0,-2,10,-1,-1,-1,-4,-1,-3,-1,-1, %U A334312 4,11,0,0,0,-3,0,-2,0,0,5,-10,12,-1,-2,-1,-2,2,-1,-1,-2,4,-9,2 %N A334312 Triangle read by rows: T(n,k) = Sum_{i=k..n} A191898(i,k). %C A334312 A334314(n)/A334313(n) = Sum_{k=1..n} T(n,k)/k. %H A334312 Mats Granvik, <a href="/A334312/a334312.txt">Mathematica program for recurrence 1</a> %H A334312 Mats Granvik, <a href="/A334312/a334312_1.txt">Mathematica program for recurrence 2</a> %F A334312 Let: f(n) = Sum_{ d divides n } d*mu(d) = A023900(n), then T(n,k) = Sum_{i=k..n} f(gcd(i,k)). %F A334312 Recurrence 1: %F A334312 T(n, 1) = n. %F A334312 T(n, k) = [n >= k]*[k > 1]*(Sum_{j=0..n-k} Sum_{i=j+1..k-1} (T(k-1,i)-T(k,i)) -Sum_{i=n-k+1..n-1} T(i, k)). %F A334312 Recurrence 2: %F A334312 T(n, 1) = n. %F A334312 T(n, k) = [n >= k]*(Sum_{i=n-k+1..k-1}T(k-1,i)-T(k,i)) + [n >= 2*k]*T(n-k,k). %e A334312 Triangle begins: %e A334312 1, %e A334312 2, -1, %e A334312 3, 0, -2, %e A334312 4, -1, -1, -1, %e A334312 5, 0, 0, 0, -4, %e A334312 6, -1, -2, -1, -3, 2, %e A334312 7, 0, -1, 0, -2, 3, -6, %e A334312 8, -1, 0, -1, -1, 2, -5, -1, %e A334312 9, 0, -2, 0, 0, 0, -4, 0, -2, %e A334312 10, -1, -1, -1, -4, -1, -3, -1, -1, 4, %e A334312 11, 0, 0, 0, -3, 0, -2, 0, 0, 5, -10, %e A334312 12, -1, -2, -1, -2, 2, -1, -1, -2, 4, -9, 2, %e A334312 ... %t A334312 nn=14; f[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]; Flatten[Table[Table[Sum[f[GCD[i, k]], {i, k, n}], {k, 1, n}], {n, 1, nn}]] %Y A334312 Row sums give A000012. %Y A334312 Cf. A191898, A309229, A023900. %K A334312 sign,tabl %O A334312 1,2 %A A334312 _Mats Granvik_, Apr 22 2020