cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334315 E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} p(k) * A(x)^k / k!, where p = A000041 (partition numbers).

This page as a plain text file.
%I A334315 #4 Apr 22 2020 18:45:38
%S A334315 1,-2,9,-65,653,-8432,133188,-2488450,53683569,-1313214351,
%T A334315 35916970957,-1086055854233,35975402985863,-1295514629022924,
%U A334315 50391598721116365,-2105485003413499952,94047072252968125326,-4472183077495496587696,225565085807090517308839
%N A334315 E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} p(k) * A(x)^k / k!, where p = A000041 (partition numbers).
%C A334315 Exponential reversion of A000041 (partition numbers).
%H A334315 <a href="/index/Res#revert">Index entries for reversions of series</a>
%t A334315 nmax = 19; CoefficientList[InverseSeries[Series[Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
%Y A334315 Cf. A000041, A007312, A050394, A066398.
%K A334315 sign
%O A334315 1,2
%A A334315 _Ilya Gutkovskiy_, Apr 22 2020