cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334348 The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.

This page as a plain text file.
%I A334348 #15 Aug 03 2022 17:42:01
%S A334348 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,1,0,0,1,0,0,0,0,3,0,0,0,0,1,0,3,3,0,
%T A334348 1,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,1,0,0,1,5,1,0,0,1,0,0,0,
%U A334348 0,0,0,5,5,0,0,0,0,0,0,0,2,0,0,5,6,5,0
%N A334348 The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.
%C A334348 This array has connections with the bitwise AND operator (A004198).
%H A334348 Rémy Sigrist, <a href="/A334348/b334348.txt">Table of n, a(n) for n = 0..11475</a> (antidiagonals 0..150)
%H A334348 Rémy Sigrist, <a href="/A334348/a334348.png">Colored representation of (x, y) for 0 <= x, y <= 1000</a> (where the hue is function of T(x, y))
%H A334348 Rémy Sigrist, <a href="/A334348/a334348.gp.txt">PARI program for A334348</a>
%H A334348 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeckendorf&#39;s_theorem">Zeckendorf's theorem</a>
%H A334348 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>
%F A334348 T(n, k) = A022290(A003714(n) AND A003714(k)) (where AND denotes the bitwise AND operator, A004198).
%F A334348 T(n, 0) = 0.
%F A334348 T(n, n) = n.
%F A334348 T(n, k) = T(k, n).
%F A334348 T(m, T(n, k)) = T(T(m, n), k).
%e A334348 Square array begins:
%e A334348   n\k|  0  1  2  3  4  5  6  7  8  9  10  11  12  13
%e A334348   ---+----------------------------------------------
%e A334348     0|  0  0  0  0  0  0  0  0  0  0   0   0   0   0
%e A334348     1|  0  1  0  0  1  0  1  0  0  1   0   0   1   0
%e A334348     2|  0  0  2  0  0  0  0  2  0  0   2   0   0   0
%e A334348     3|  0  0  0  3  3  0  0  0  0  0   0   3   3   0
%e A334348     4|  0  1  0  3  4  0  1  0  0  1   0   3   4   0
%e A334348     5|  0  0  0  0  0  5  5  5  0  0   0   0   0   0
%e A334348     6|  0  1  0  0  1  5  6  5  0  1   0   0   1   0
%e A334348     7|  0  0  2  0  0  5  5  7  0  0   2   0   0   0
%e A334348     8|  0  0  0  0  0  0  0  0  8  8   8   8   8   0
%e A334348     9|  0  1  0  0  1  0  1  0  8  9   8   8   9   0
%e A334348    10|  0  0  2  0  0  0  0  2  8  8  10   8   8   0
%e A334348    11|  0  0  0  3  3  0  0  0  8  8   8  11  11   0
%e A334348    12|  0  1  0  3  4  0  1  0  8  9   8  11  12   0
%e A334348    13|  0  0  0  0  0  0  0  0  0  0   0   0   0  13
%o A334348 (PARI) See Links section.
%Y A334348 Cf. A003714, A022290, A004198, A332022, A332565.
%K A334348 nonn,tabl,look,base
%O A334348 0,13
%A A334348 _Rémy Sigrist_, Apr 24 2020