This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334352 #24 Aug 03 2020 01:11:16 %S A334352 1,6,15,14,18,22,26,26,34,38,38,29,29,29,29,37,41,43,43,43,43,47,47, %T A334352 47,47,47,59,59,59,59,61,71,71,71,77,79,79 %N A334352 The least positive integer k such that there exists a set of n distinct integers less than or equal to k with this property: the sum of every two members of this set divides the product of all the members of this set. %C A334352 Upper bound: For every n != 3, a(n) <= 4n-2. Proof: For every n >= 5, we have the set {2, 6, 10, ..., 4n-2}, which obviously possesses the desired property. It happens to also work for n = 1, 2, 4. %H A334352 Zizheng Fang, <a href="/A334352/a334352.txt">Python program to generate A334352</a> %e A334352 n=1: %e A334352 1 %e A334352 n=2: %e A334352 3, 6 %e A334352 3*6 = 18 %e A334352 3+6 divides 18 %e A334352 n=3: %e A334352 3, 12, 15 %e A334352 3*12*15 = 540 %e A334352 3+12 divides 540 %e A334352 3+15 divides 540 %e A334352 12+15 divides 540 %e A334352 n=4: %e A334352 2, 6, 10, 14 %e A334352 2*6*10*14 = 1680 %e A334352 2+6 divides 1680 %e A334352 2+10 divides 1680 %e A334352 2+14 divides 1680 %e A334352 6+10 divides 1680 %e A334352 6+14 divides 1680 %e A334352 10+14 divides 1680 %e A334352 n=5: %e A334352 2, 6, 10, 14, 18 %e A334352 n=6: %e A334352 2, 6, 10, 14, 18, 22 %e A334352 n=7: %e A334352 2, 4, 10, 14, 18, 22, 26 %e A334352 2, 6, 10, 14, 18, 22, 26 %e A334352 4, 6, 10, 14, 18, 22, 26 %e A334352 n=8: %e A334352 2, 4, 6, 10, 14, 18, 22, 26 %e A334352 n=9: %e A334352 2, 6, 8, 10, 14, 18, 22, 26, 34 %e A334352 2, 6, 10, 14, 18, 22, 26, 30, 34 %Y A334352 Cf. A334354. %K A334352 nonn,more %O A334352 1,2 %A A334352 _Zizheng Fang_, Apr 24 2020