cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334354 The number of optimal sets of n distinct integers less than or equal to k with this property: the sum of every two members of this set divides the product of all the members of this set. An optimal set with this property is one whose greatest member is the least possible.

This page as a plain text file.
%I A334354 #20 Aug 03 2020 01:11:22
%S A334354 1,1,1,1,1,1,3,1,2,6,1,2,5,4,1,1,1,196,115,34,4,674,303,86,14,1,852,
%T A334354 164,19,1,1,176,19,1,1,44503,11396
%N A334354 The number of optimal sets of n distinct integers less than or equal to k with this property: the sum of every two members of this set divides the product of all the members of this set. An optimal set with this property is one whose greatest member is the least possible.
%H A334354 Zizheng Fang, <a href="/A334354/a334354.txt">Python program to generate A334354</a>
%e A334354 n=1:
%e A334354 1
%e A334354 n=2:
%e A334354 3, 6
%e A334354 3*6 = 18
%e A334354 3+6 divides 18
%e A334354 n=3:
%e A334354 3, 12, 15
%e A334354 3*12*15 = 540
%e A334354 3+12 divides 540
%e A334354 3+15 divides 540
%e A334354 12+15 divides 540
%e A334354 n=4:
%e A334354 2, 6, 10, 14
%e A334354 2*6*10*14 = 1680
%e A334354 2+6 divides 1680
%e A334354 2+10 divides 1680
%e A334354 2+14 divides 1680
%e A334354 6+10 divides 1680
%e A334354 6+14 divides 1680
%e A334354 10+14 divides 1680
%e A334354 n=5:
%e A334354 2, 6, 10, 14, 18
%e A334354 n=6:
%e A334354 2, 6, 10, 14, 18, 22
%e A334354 n=7:
%e A334354 2, 4, 10, 14, 18, 22, 26
%e A334354 2, 6, 10, 14, 18, 22, 26
%e A334354 4, 6, 10, 14, 18, 22, 26
%e A334354 n=8:
%e A334354 2, 4, 6, 10, 14, 18, 22, 26
%e A334354 n=9:
%e A334354 2, 6, 8, 10, 14, 18, 22, 26, 34
%e A334354 2, 6, 10, 14, 18, 22, 26, 30, 34
%Y A334354 Cf. A334352.
%K A334354 nonn,more
%O A334354 1,7
%A A334354 _Zizheng Fang_, Apr 24 2020