This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334374 #9 Apr 27 2020 23:58:59 %S A334374 0,0,0,0,1,0,2,1,0,3,2,4,5,0,4,3,2,6,5,7,8,0,8,4,3,9,6,10,11,1,12,7, %T A334374 13,14,0,11,5,7,15,3,13,9,6,16,10,8,17,1,18,12,19,20,14,21,22,0,19,6, %U A334374 10,22,4,23,15,9,24,18,11,25,13,26,16,27,28,17,29 %N A334374 Lexicographically earliest sequence of nonnegative integers such that for any distinct i and j, a(i) = a(j) implies that the Zeckendorf representations of i and of j have no common term. %C A334374 This sequence is a variant of A279125. %H A334374 Rémy Sigrist, <a href="/A334374/b334374.txt">Table of n, a(n) for n = 0..10000</a> %H A334374 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeckendorf's_theorem">Zeckendorf's theorem</a> %H A334374 Rémy Sigrist, <a href="/A334374/a334374.gp.txt">PARI program for A334374</a> %F A334374 a(n) = 0 iff n is a Fibonacci number (A000045). %e A334374 The first terms, alongside their Zeckendorf representation in binary, are: %e A334374 n a(n) bin(A003714(a(n))) %e A334374 -- ---- ------------------ %e A334374 0 0 0 %e A334374 1 0 1 %e A334374 2 0 10 %e A334374 3 0 100 %e A334374 4 1 101 %e A334374 5 0 1000 %e A334374 6 2 1001 %e A334374 7 1 1010 %e A334374 8 0 10000 %e A334374 9 3 10001 %e A334374 10 2 10010 %e A334374 11 4 10100 %e A334374 12 5 10101 %e A334374 13 0 100000 %o A334374 (PARI) See Links section. %Y A334374 Cf. A000045, A279125. %K A334374 nonn %O A334374 0,7 %A A334374 _Rémy Sigrist_, Apr 25 2020