This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334377 #40 Apr 29 2020 10:01:20 %S A334377 1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,2,1,2,1,2,1,1,1,0,1, %T A334377 1,0,1,1,1,2,2,2,2,3,2,3,2,2,2,2,1,1,1,0,1,1,0,1,1,1,2,2,3,2,4,3,4,4, %U A334377 4,4,4,4,3,4,2,3,2,2,1,1,1,0,1 %N A334377 Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n. %F A334377 G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2. %e A334377 Irregular triangle begins: %e A334377 ---------------------------------------------------------- %e A334377 n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 %e A334377 ---------------------------------------------------------- %e A334377 2 | 1 0 1 %e A334377 3 | 1 0 1 1 0 1 %e A334377 4 | 1 0 1 1 1 1 1 1 0 1 %e A334377 5 | 1 0 1 1 1 2 1 2 1 2 1 1 1 0 1 %e A334377 6 | 1 0 1 1 1 2 2 2 2 3 2 3 2 2 2 2 1 1 1 0 1 %e A334377 ... %e A334377 For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9; %e A334377 For n = 5: T(5,5) = 2 because we have [5] and [3,2]. %e A334377 G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14. %t A334377 trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten %Y A334377 Cf. A000009, A000041, A025147, A087897, A334305. %K A334377 tabf,nonn,easy %O A334377 2,25 %A A334377 Victor Mishnyakov, _Elena Lanina_, Apr 25 2020