This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334382 #17 Apr 27 2020 06:11:43 %S A334382 60,120,240,360,960,720,3840,1440,2160,2880,8160,3600,69360,8400,8640, %T A334382 7200,32640,9360,16800,14400,34560,24480,130560,18720,77760,54600, %U A334382 28080,25200,67200,37440,11045580,61200,73440,97920,294000,46800,65520,50400,268800,109200 %N A334382 Least k whose set of divisors contains exactly n Pythagorean triples, or 0 if no such k exists. %C A334382 This is a subsequence of A169823: a(n) == 0 (mod 60) because one side of every Pythagorean triple is divisible by 3, another by 4, and another by 5. The smallest and best-known Pythagorean triple is (a, b, c) = (3, 4, 5). %H A334382 Giovanni Resta, <a href="/A334382/b334382.txt">Table of n, a(n) for n = 1..450</a> %e A334382 a(3) = 240 because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 Pythagorean triples: (3, 4, 5), (6, 8, 10) and (12, 16, 20). The first triple is primitive. %p A334382 with(numtheory): %p A334382 for n from 1 to 52 do : %p A334382 ii:=0: %p A334382 for k from 60 by 60 to 10^8 while(ii=0) do: %p A334382 d:=divisors(k):n0:=nops(d):it:=0: %p A334382 for i from 1 to n0-1 do: %p A334382 for j from i+1 to n0-2 do : %p A334382 for m from i+2 to n0 do: %p A334382 if d[i]^2 + d[j]^2 = d[m]^2 %p A334382 then %p A334382 it:=it+1: %p A334382 else %p A334382 fi: %p A334382 od: %p A334382 od: %p A334382 od: %p A334382 if it = n %p A334382 then %p A334382 ii:=1: printf (`%d %d \n`,n,k): %p A334382 else %p A334382 fi: %p A334382 od: %p A334382 od: %Y A334382 Cf. A103605, A103606, A169823, A334080. %K A334382 nonn,hard %O A334382 1,1 %A A334382 _Michel Lagneau_, Apr 26 2020 %E A334382 a(31) from _Giovanni Resta_, Apr 27 2020